BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 4041911)

  • 1. Methylmercury poisoning of the developing nervous system in the rat: decreased activity of glutamic acid decarboxylase in cerebral cortex and neostriatum.
    O'Kusky JR; McGeer EG
    Brain Res; 1985 Aug; 353(2):299-306. PubMed ID: 4041911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylmercury-induced movement and postural disorders in developing rat: loss of somatostatin-immunoreactive interneurons in the striatum.
    O'Kusky JR; Radke JM; Vincent SR
    Brain Res; 1988 May; 468(1):11-23. PubMed ID: 2897869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylmercury-induced movement and postural disorders in developing rat: high-affinity uptake of choline, glutamate, and gamma-aminobutyric acid in the cerebral cortex and caudate-putamen.
    O'Kusky JR; McGeer EG
    J Neurochem; 1989 Oct; 53(4):999-1006. PubMed ID: 2570131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain regional distribution of glutamic acid decarboxylase, choline acetyltransferase, and acetylcholinesterase in the rat: effects of chronic manganese chloride administration after two years.
    Lai JC; Leung TK; Lim L
    J Neurochem; 1981 Apr; 36(4):1443-8. PubMed ID: 7264641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental changes in choline acetyltransferase and glutamate decarboxylase activity in various regions of the brain of the male, female, and neonatally androgenized female rat.
    Brown R; Brooksbank BW
    Neurochem Res; 1979 Apr; 4(2):127-36. PubMed ID: 460517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Choline acetyltransferase, glutamic acid decarboxylase and somatostatin in the kainic acid model for chronic temporal lobe epilepsy.
    Baran H; Kepplinger B; Draxler M; Skofitsch G
    Neurosignals; 2004; 13(6):290-7. PubMed ID: 15627816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of short- and long-term ganglioside treatment on the recovery of neurochemical markers in the ibotenic acid-lesioned rat striatum.
    Contestabile A; Virgili M; Migani P; Barnabei O
    J Neurosci Res; 1990 Aug; 26(4):483-7. PubMed ID: 1977926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic bombesin treatment increased the [3H]spiperone binding, glutamate decarboxylase and choline acetyltransferase activity in the rat brain.
    Hsu LL; Yu JR; Upp JR; Glass EJ; Townsend CM
    Brain Res; 1987 Aug; 417(2):232-8. PubMed ID: 3651814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neonatal monosodium glutamate treatment modifies glutamic acid decarboxylase activity during rat brain postnatal development.
    Ureña-Guerrero ME; López-Pérez SJ; Beas-Zárate C
    Neurochem Int; 2003 Mar; 42(4):269-76. PubMed ID: 12470699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The response of GABAergic and cholinergic neurons to transient cerebral ischemia.
    Francis A; Pulsinelli W
    Brain Res; 1982 Jul; 243(2):271-8. PubMed ID: 7104739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GABA-transaminase and glutamic acid decarboxylase changes in the brain of rats treated with pyrithiamine.
    Thompson SG; McGeer EG
    Neurochem Res; 1985 Dec; 10(12):1653-60. PubMed ID: 4088435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The distribution and origin of glutamate decarboxylase and choline acetyltransferase in ventral pallidum and other basal forebrain regions.
    Walaas I; Fonnum F
    Brain Res; 1979 Nov; 177(2):325-36. PubMed ID: 497834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of insulin on choline acetyltransferase and glutamic acid decarboxylase activities in neuron-rich striatal cultures.
    Brass BJ; Nonner D; Barrett JN
    J Neurochem; 1992 Aug; 59(2):415-24. PubMed ID: 1629717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of undernutrition on the regional development of transmitter enzymes: glutamate decarboxylase and choline acetyltransferase.
    Patel AJ; del Vecchio M; Atkinson DJ
    Dev Neurosci; 1978; 1(1):41-53. PubMed ID: 755680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylmercury-induced movement and postural disorders in developing rat: regional analysis of brain catecholamines and indoleamines.
    O'Kusky JR; Boyes BE; McGeer EG
    Brain Res; 1988 Jan; 439(1-2):138-46. PubMed ID: 3359179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of glutaminase in the rat neostriatum.
    McGeer EG; McGeer PL
    J Neurochem; 1979 Mar; 32(3):1071-5. PubMed ID: 430040
    [No Abstract]   [Full Text] [Related]  

  • 17. Neurotoxicity induced by continuous infusion of quinolinic acid into the lateral ventricle in rats.
    Yamada K; Fuji K; Nabeshima T; Kameyama T
    Neurosci Lett; 1990 Oct; 118(1):128-31. PubMed ID: 2147984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamic acid decarboxylase activity decreases in mouse neocortex after lesions of the basal forebrain.
    Höhmann CF; Bear MF; Ebner FF
    Brain Res; 1985 Apr; 333(1):165-8. PubMed ID: 2986770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABAergic and cholinergic indices in various regions of rat brain after intracerebral injections of folic acid.
    McGeer PL; McGeer EG; Nagai T
    Brain Res; 1983 Jan; 260(1):107-16. PubMed ID: 6824947
    [No Abstract]   [Full Text] [Related]  

  • 20. Acute and chronic effects of lithium chloride on GABA-ergic function in the rat corpus striatum and frontal cerebral cortex.
    Otero Losada ME; Rubio MC
    Naunyn Schmiedebergs Arch Pharmacol; 1986 Feb; 332(2):169-72. PubMed ID: 3010141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.