These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 4042544)

  • 1. A technique for the measurement of orthophosphate in human erythrocytes, and some studies of its determinants.
    Challa A; Bevington A; Angier CM; Asbury AJ; Preston CJ; Russell RG
    Clin Sci (Lond); 1985 Oct; 69(4):429-34. PubMed ID: 4042544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate metabolism in erythrocytes of critically ill patients.
    Bevington A; Asbury AJ; Preston CJ; Russell RG
    Clin Sci (Lond); 1985 Oct; 69(4):435-40. PubMed ID: 4042545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orthophosphate transport in the erythrocyte of normal subjects and of patients with X-linked hypophosphatemia.
    Tenenhouse HS; Scriver CR
    J Clin Invest; 1975 Mar; 55(3):644-54. PubMed ID: 1117070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erythrocyte phosphate metabolism and pH in vitro: a model for clinical phosphate disorders in acidosis and alkalosis.
    Kemp GJ; Bevington A; Russell RG
    Miner Electrolyte Metab; 1988; 14(5):266-70. PubMed ID: 3173264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study of intracellular orthophosphate concentration in human muscle and erythrocytes by 31P nuclear magnetic resonance spectroscopy and selective chemical assay.
    Bevington A; Mundy KI; Yates AJ; Kanis JA; Russell RG; Taylor DJ; Rajagopalan B; Radda GK
    Clin Sci (Lond); 1986 Dec; 71(6):729-35. PubMed ID: 3024899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of phosphate metabolism in human red cells following prolonged incubation to steady state in vitro.
    Kemp GJ; Bevington A; Khodja D; Russell RG
    Biochim Biophys Acta; 1988 Apr; 969(2):139-47. PubMed ID: 3355860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biphasic effect of orthophosphate on the (Na, K)-pump of human red cells.
    Mercer RW; Dunham PB
    Biochim Biophys Acta; 1981 Oct; 648(1):63-70. PubMed ID: 6271213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 32P-labelling anomalies in human erythrocytes. Is there more than one pool of cellular Pi?
    Kemp GJ; Bevington A; Khodja D; Challa A; Russell RG
    Biochem J; 1989 Dec; 264(3):729-36. PubMed ID: 2695064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium-phosphate cotransport in human red blood cells. Kinetics and role in membrane metabolism.
    Shoemaker DG; Bender CA; Gunn RB
    J Gen Physiol; 1988 Oct; 92(4):449-74. PubMed ID: 3204363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Net fluxes of orthophosphate across the plasma membrane in human red cells following alteration of pH and extracellular Pi concentration.
    Kemp GJ; Bevington A; Khodja D; Russell RG
    Biochim Biophys Acta; 1988 Apr; 969(2):148-57. PubMed ID: 3355861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red cell phosphate metabolism in full-term neonates.
    Challa A; Chaliasos N; Liossis G; Palaskas C; Staphylakis C; Lapatsanis P
    Helv Paediatr Acta; 1985 Apr; 40(1):39-45. PubMed ID: 3843235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of erythrocyte organic phosphates in blood oxygen transport in anemic quail.
    Riera M; Fuster JF; Palacios L
    Am J Physiol; 1991 Apr; 260(4 Pt 2):R798-803. PubMed ID: 2012250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors controlling the intracellular concentration of orthophosphate (Pi) in mammalian cells.
    Bevington A; Kemp GJ; Russell RG
    Adv Exp Med Biol; 1986; 208():469-78. PubMed ID: 3551544
    [No Abstract]   [Full Text] [Related]  

  • 14. Transverse water relaxation in whole blood and erythrocytes at 3T, 7T, 9.4T, 11.7T and 16.4T; determination of intracellular hemoglobin and extracellular albumin relaxivities.
    Grgac K; Li W; Huang A; Qin Q; van Zijl PC
    Magn Reson Imaging; 2017 May; 38():234-249. PubMed ID: 27993533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Product-precursor relationships amongst inositol polyphosphates. Incorporation of [32P]Pi into myo-inositol 1,3,4,6-tetrakisphosphate, myo-inositol 1,3,4,5-tetrakisphosphate, myo-inositol 3,4,5,6-tetrakisphosphate and myo-inositol 1,3,4,5,6-pentakisphosphate in intact avian erythrocytes.
    Stephens LR; Downes CP
    Biochem J; 1990 Jan; 265(2):435-52. PubMed ID: 2405842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphate metabolism in intact human erythrocytes: determination by phosphorus-31 nuclear magnetic resonance spectroscopy.
    Henderson TO; Costello AJ; Omachi A
    Proc Natl Acad Sci U S A; 1974 Jun; 71(6):2487-90. PubMed ID: 4366770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Intermediary phosphate metabolism of human erythrocytes; paper chromatographic studies with the use of P32-labeled orthophosphate].
    GERLACH E; FLECKENSTEIN A; GROSS E
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1958; 266(5):528-55. PubMed ID: 13600996
    [No Abstract]   [Full Text] [Related]  

  • 18. Stimulation and inhibition by ATP and orthophosphate of the potassium-potassium exchange in resealed red cell ghosts.
    Eisner DA; Richards DE
    J Physiol; 1983 Feb; 335():495-506. PubMed ID: 6875890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of the liberation of orthophosphate from adenosine triphosphate by the stromata of human erythrocytes.
    HERBERT E
    J Cell Comp Physiol; 1956 Feb; 47(1):11-36. PubMed ID: 13306729
    [No Abstract]   [Full Text] [Related]  

  • 20. A proton n.m.r. study of iminodipeptide transport and hydrolysis in the human erythrocyte. Possible physiological roles for the coupled system.
    King GF; Kuchel PW
    Biochem J; 1984 Jun; 220(2):553-60. PubMed ID: 6743286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.