These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 4042573)

  • 21. Comparison of two systems of measuring energy expenditure.
    Stewart CL; Goody CM; Branson R
    JPEN J Parenter Enteral Nutr; 2005; 29(3):212-7. PubMed ID: 15837782
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An open-circuit indirect whole body calorimeter for the continuous measurement of energy expenditure of man in the tropics.
    Shetty PS; Sheela ML; Murgatroyd PR; Kurpad AV
    Indian J Med Res; 1987 Apr; 85():453-60. PubMed ID: 3623657
    [No Abstract]   [Full Text] [Related]  

  • 23. Indirect calorimetry in mechanically ventilated children: a new technique that overcomes the problem of endotracheal tube leak.
    Selby AM; McCauley JC; Schell DN; O'Connell A; Gillis J; Gaskin KJ
    Crit Care Med; 1995 Feb; 23(2):365-70. PubMed ID: 7867361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Indirect calorimetry: variability of consecutive baseline determinations of carbohydrate and fat utilization from gas exchange measurements.
    Gasic S; Schneider B; Waldhäusl W
    Horm Metab Res; 1997 Jan; 29(1):12-5. PubMed ID: 9049647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Classical experiments in whole-body metabolism: open-circuit respirometry-diluted flow chamber, hood, or facemask systems.
    Schoffelen PFM; Plasqui G
    Eur J Appl Physiol; 2018 Jan; 118(1):33-49. PubMed ID: 29080000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determining the Accuracy and Reliability of Indirect Calorimeters Utilizing the Methanol Combustion Technique.
    Kaviani S; Schoeller DA; Ravussin E; Melanson EL; Henes ST; Dugas LR; Dechert RE; Mitri G; Schoffelen PFM; Gubbels P; Tornberg A; Garland S; Akkermans M; Cooper JA
    Nutr Clin Pract; 2018 Apr; 33(2):206-216. PubMed ID: 29658183
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurement of substrate oxidation in man.
    Tappy L; Schneiter P
    Diabetes Metab; 1997 Nov; 23(5):435-42. PubMed ID: 9416437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A validation and comparison study of two metabolic monitors.
    Phang PT; Rich T; Ronco J
    JPEN J Parenter Enteral Nutr; 1990; 14(3):259-61. PubMed ID: 2112638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro evaluation of a compact metabolic measurement instrument.
    Weissman C; Sardar A; Kemper M
    JPEN J Parenter Enteral Nutr; 1990; 14(2):216-21. PubMed ID: 2112632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy expenditure measurements are reproducible in different whole-room indirect calorimeters in humans.
    Stinson EJ; Rodzevik T; Krakoff J; Piaggi P; Chang DC
    Obesity (Silver Spring); 2022 Sep; 30(9):1766-1777. PubMed ID: 35920141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measuring energy expenditure in community-dwelling older adults: are portable methods valid and acceptable?
    Fares S; Miller MD; Masters S; Crotty M
    J Am Diet Assoc; 2008 Mar; 108(3):544-8. PubMed ID: 18313438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated open flow respirometry in continuous and long-term measurements: design and principles.
    Tøien Ø
    J Appl Physiol (1985); 2013 Apr; 114(8):1094-107. PubMed ID: 23349455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Comparison of Carbon Dioxide Elimination Measurements Between a Portable Indirect Calorimeter and Volumetric Capnography Monitor: An In Vitro Simulation.
    Smallwood CD; Martinez EE; Mehta NM
    Respir Care; 2016 Mar; 61(3):354-8. PubMed ID: 26715770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reproducibility of 24-h energy expenditure, substrate utilization and spontaneous physical activity in obesity measured in a respiration chamber.
    Toubro S; Christensen NJ; Astrup A
    Int J Obes Relat Metab Disord; 1995 Aug; 19(8):544-9. PubMed ID: 7489024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A continuous analyzer for monitoring respiratory gases and expired radioactivity in clinical studies.
    Long CL; Carlo MA; Schaffel N; Schiller WS; Blakemore WS; Spencer JL; Broell JR
    Metabolism; 1979 Apr; 28(4):320-32. PubMed ID: 449684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploration of Energy Metabolism in the Mouse Using Indirect Calorimetry: Measurement of Daily Energy Expenditure (DEE) and Basal Metabolic Rate (BMR).
    Meyer CW; Reitmeir P; Tschöp MH
    Curr Protoc Mouse Biol; 2015 Sep; 5(3):205-222. PubMed ID: 26331756
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substrate oxidation errors during combined indirect calorimetry-hyperinsulinemic glucose clamp studies.
    Thorburn AW; Gumbiner B; Flynn T; Henry RR
    Metabolism; 1991 Apr; 40(4):391-8. PubMed ID: 2011080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The use of a handheld calorimetry unit to estimate energy expenditure during different physiological conditions.
    Rubenbauer JR; Johannsen DL; Baier SM; Litchfield R; Flakoll PJ
    JPEN J Parenter Enteral Nutr; 2006; 30(3):246-50. PubMed ID: 16639072
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accuracy of a portable multisensor body monitor for predicting resting energy expenditure in older people: a comparison with indirect calorimetry.
    Heiermann S; Khalaj Hedayati K; Müller MJ; Dittmar M
    Gerontology; 2011; 57(5):473-9. PubMed ID: 21196692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A simple and cheap respiration chamber for long-term studies of energy expenditure in human beings.
    Gurr MI; Robinson MP; Maltby D
    Proc Nutr Soc; 1979 Sep; 38(2):64A. PubMed ID: 504188
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.