These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 4042665)

  • 1. Fluorescence studies on tryptophan and sulfhydryl group changes of bovine lens crystallins in a photodynamic system.
    Andley UP; Chapman SF; Chylack LT
    Curr Eye Res; 1985 Aug; 4(8):831-42. PubMed ID: 4042665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accessibilities of the sulfhydryl groups of native and photooxidized lens crystallins: a fluorescence lifetime and quenching study.
    Andley UP; Clark BA
    Biochemistry; 1988 Jan; 27(2):810-20. PubMed ID: 3349065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related changes in protein conformation in bovine lens crystallins.
    Liang JN; Bose SK; Chakrabarti B
    Exp Eye Res; 1985 Mar; 40(3):461-9. PubMed ID: 4065237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of native and oxidized beta- and gamma-crystallin using bovine lens epithelial cell and rabbit reticulocyte extracts.
    Shang F; Huang L; Taylor A
    Curr Eye Res; 1994 Jun; 13(6):423-31. PubMed ID: 7924406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence study of the effects of aging and diabetes mellitus on human lens alpha-crystallin.
    Liang JN
    Curr Eye Res; 1987 Feb; 6(2):351-5. PubMed ID: 3568749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analysis of the H2O2-mediated crosslinking of lens crystallins catalyzed by the heme-undecapeptide from cytochrome c.
    Bodaness RS; Leclair M; Zigler JS
    Arch Biochem Biophys; 1984 Jun; 231(2):461-9. PubMed ID: 6732243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crosslinking and photoreaction of ozone-oxidized calf-lens alpha-crystallin.
    Fujimori E
    Invest Ophthalmol Vis Sci; 1982 Mar; 22(3):402-5. PubMed ID: 7061212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alpha-crystallin can act as a chaperone under conditions of oxidative stress.
    Wang K; Spector A
    Invest Ophthalmol Vis Sci; 1995 Feb; 36(2):311-21. PubMed ID: 7843902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes of lens crystallins photosensitized with tryptophan metabolites.
    Ichijima H; Iwata S
    Ophthalmic Res; 1987; 19(3):157-63. PubMed ID: 3658326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The molecular localization of non-tryptophan chromophores in calf lens crystallins.
    Pulcini D; Stiuso P; Miele L; Della Pietra G; Colonna G
    Biochim Biophys Acta; 1989 Mar; 995(1):64-9. PubMed ID: 2923916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and stability of gamma-crystallins. I. Spectroscopic evaluation of secondary and tertiary structure in solution.
    Mandal K; Bose SK; Chakrabarti B; Siezen RJ
    Biochim Biophys Acta; 1985 Nov; 832(2):156-64. PubMed ID: 4063374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photodegradation of tryptophan residues and attenuation of molecular chaperone activity in alpha-crystallin are correlated.
    Schauerte JA; Gafni A
    Biochem Biophys Res Commun; 1995 Jul; 212(3):900-5. PubMed ID: 7626128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acrylamide and iodide fluorescence quenching as a structural probe of tryptophan microenvironment in bovine lens crystallins.
    Phillips SR; Wilson LJ; Borkman RF
    Curr Eye Res; 1986 Aug; 5(8):611-9. PubMed ID: 3757547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic studies on the riboflavin-sensitized conformational changes of calf lens alpha-crystallin.
    Andley UP
    Exp Eye Res; 1988 Apr; 46(4):531-44. PubMed ID: 3384012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of differentially oxidized alpha-crystallins in bovine lens epithelial cells.
    Huang LL; Shang F; Nowell TR; Taylor A
    Exp Eye Res; 1995 Jul; 61(1):45-54. PubMed ID: 7556469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational changes of beta H-crystallin in riboflavin-sensitized photooxidation.
    Andley UP; Clark BA
    Exp Eye Res; 1988 Jul; 47(1):1-15. PubMed ID: 3409981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of near-UV radiation on human lens beta-crystallins: protein structural changes and the production of O2- and H2O2.
    Andley UP; Clark BA
    Photochem Photobiol; 1989 Jul; 50(1):97-105. PubMed ID: 2762385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular structures and interactions of bovine and human gamma-crystallins.
    Summers L; Slingsby C; White H; Narebor M; Moss D; Miller L; Mahadevan D; Lindley P; Driessen H; Blundell T
    Ciba Found Symp; 1984; 106():219-36. PubMed ID: 6568975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased sensitivity of amino-arm truncated betaA3-crystallin to UV-light-induced photoaggregation.
    Sergeev YV; Soustov LV; Chelnokov EV; Bityurin NM; Backlund PS; Wingfield PT; Ostrovsky MA; Hejtmancik JF
    Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3263-73. PubMed ID: 16123428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimization of photooxidative insult to calf lens protein irradiated with near UV-light in the presence of pigmented glucosides derived from human lens protein.
    Inoue A; Sasaki D; Satoh K
    Exp Eye Res; 2004 Dec; 79(6):833-7. PubMed ID: 15642320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.