These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

917 related articles for article (PubMed ID: 4043274)

  • 1. The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space.
    Fisk JD; Goodale MA
    Exp Brain Res; 1985; 60(1):159-78. PubMed ID: 4043274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eye-hand coordination during visuomotor adaptation: effects of hemispace and joint coordination.
    Rand MK; Rentsch S
    Exp Brain Res; 2017 Dec; 235(12):3645-3661. PubMed ID: 28900673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unilateral, 3D Arm Movement Kinematics Are Encoded in Ipsilateral Human Cortex.
    Bundy DT; Szrama N; Pahwa M; Leuthardt EC
    J Neurosci; 2018 Nov; 38(47):10042-10056. PubMed ID: 30301759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaching to ipsilateral or contralateral targets: within-hemisphere visuomotor processing cannot explain hemispatial differences in motor control.
    Carey DP; Hargreaves EL; Goodale MA
    Exp Brain Res; 1996 Dec; 112(3):496-504. PubMed ID: 9007551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for subcortical involvement in the visual control of human reaching.
    Day BL; Brown P
    Brain; 2001 Sep; 124(Pt 9):1832-40. PubMed ID: 11522585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of roll visual motion on online control of arm movement: reaching within a dynamic virtual environment.
    Dvorkin AY; Kenyon RV; Keshner EA
    Exp Brain Res; 2009 Feb; 193(1):95-107. PubMed ID: 18936925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual cortex activation in kinesthetic guidance of reaching.
    Darling WG; Seitz RJ; Peltier S; Tellmann L; Butler AJ
    Exp Brain Res; 2007 Jun; 179(4):607-19. PubMed ID: 17171536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The control of memory-guided reaching movements in peripersonal space.
    Heath M; Westwood DA; Binsted G
    Motor Control; 2004 Jan; 8(1):76-106. PubMed ID: 14973339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematics of goal-directed arm movements in neglect: control of hand in space.
    Karnath HO; Dick H; Konczak J
    Neuropsychologia; 1997 Apr; 35(4):435-44. PubMed ID: 9106272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trajectories of reaches to prismatically-displaced targets: evidence for "automatic" visuomotor recalibration.
    Jakobson LS; Goodale MA
    Exp Brain Res; 1989; 78(3):575-87. PubMed ID: 2612600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allocentric cues do not always improve whole body reaching performance.
    Hondzinski JM; Cui Y
    Exp Brain Res; 2006 Sep; 174(1):60-73. PubMed ID: 16565811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of posterior parietal cortex in visually guided reaching movements in humans.
    Kertzman C; Schwarz U; Zeffiro TA; Hallett M
    Exp Brain Res; 1997 Mar; 114(1):170-83. PubMed ID: 9125463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hand trajectory invariance in reaching movements involving the trunk.
    Adamovich SV; Archambault PS; Ghafouri M; Levin MF; Poizner H; Feldman AG
    Exp Brain Res; 2001 Jun; 138(3):288-303. PubMed ID: 11460767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eye-hand coordination in on-line visuomotor adjustments.
    Abekawa N; Inui T; Gomi H
    Neuroreport; 2014 May; 25(7):441-5. PubMed ID: 24346260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebellar involvement in the coordination control of the oculo-manual tracking system: effects of cerebellar dentate nucleus lesion.
    Vercher JL; Gauthier GM
    Exp Brain Res; 1988; 73(1):155-66. PubMed ID: 3208854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of superior temporal polysensory area lesions on eye movements in the macaque monkey.
    Scalaidhe SP; Albright TD; Rodman HR; Gross CG
    J Neurophysiol; 1995 Jan; 73(1):1-19. PubMed ID: 7714555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of unilateral brain damage on visually guided reaching: hemispheric differences in the nature of the deficit.
    Fisk JD; Goodale MA
    Exp Brain Res; 1988; 72(2):425-35. PubMed ID: 3224652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm.
    Dizio P; Lackner JR
    J Neurophysiol; 1995 Oct; 74(4):1787-92. PubMed ID: 8989414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid adaptation to Coriolis force perturbations of arm trajectory.
    Lackner JR; Dizio P
    J Neurophysiol; 1994 Jul; 72(1):299-313. PubMed ID: 7965013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-field visual motion directly induces an involuntary rapid manual following response.
    Saijo N; Murakami I; Nishida S; Gomi H
    J Neurosci; 2005 May; 25(20):4941-51. PubMed ID: 15901775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.