BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 4043399)

  • 41. [Binding of Mg ions with alpha-lactalbumin studied by fluorescent spectroscopy].
    Permiakov EA; Kalinichenko LP; Morozova LA; Iarmolenko VV; Burshteĭn EA
    Biofizika; 1982; 27(4):578-83. PubMed ID: 7126652
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinetic and thermodynamic studies of tet repressor-tetracycline interaction.
    Kedracka-Krok S; Gorecki A; Bonarek P; Wasylewski Z
    Biochemistry; 2005 Jan; 44(3):1037-46. PubMed ID: 15654760
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Thermodynamic approach to the selection of polyuronide sequestrants for the protection of the human body from toxic metal ions. Interactions of polyuronides with strontium and calcium ions].
    Braudo EE; Danilova IV; Dianova VT; Kobak VV; Plashchina IG
    Vopr Pitan; 2001; 70(1):41-4. PubMed ID: 11338347
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Studies on the action features between cefuroxime axetil and bovine serum albumin].
    Wu GK; Yan CN; Liu Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Sep; 28(9):2139-43. PubMed ID: 19093579
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-affinity binding of Ca2+ to bovine alpha-lactalbumin in the absence and presence of EGTA.
    Bryant DT; Andrews P
    Biochem J; 1984 Jun; 220(2):617-20. PubMed ID: 6430284
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pb2+ and Hg2+ binding to alpha-lactalbumin.
    Veprintsev DB; Permyakov EA; Kalinichenko LP; Berliner LJ
    Biochem Mol Biol Int; 1996 Aug; 39(6):1255-65. PubMed ID: 8876980
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Determination of the thermodynamics of carbonic anhydrase acid-unfolding by titration calorimetry.
    Baranauskiene L; Matuliene J; Matulis D
    J Biochem Biophys Methods; 2008 Apr; 70(6):1043-7. PubMed ID: 18255160
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of Ca2+/Mg2+ selectivity in alpha-lactalbumin and Ca(2+)-binding lysozyme reveals a distinct Mg(2+)-specific site in lysozyme.
    Permyakov SE; Khokhlova TI; Uversky VN; Permyakov EA
    Proteins; 2010 Sep; 78(12):2609-24. PubMed ID: 20602456
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of calcium binding on the structure and stability of human growth hormone.
    Saboury AA; Atri MS; Sanati MH; Moosavi-Movahedi AA; Haghbeen K
    Int J Biol Macromol; 2005 Sep; 36(5):305-9. PubMed ID: 16102809
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interaction of alpha-lactalbumin with dimyristoyl phosphatidylcholine vesicles. I. A microcalorimetric and fluorescence study.
    Hanssens I; Houthuys C; Herreman W; van Cauwelaert FH
    Biochim Biophys Acta; 1980 Nov; 602(3):539-57. PubMed ID: 7437421
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The unfolding thermodynamics of c-type lysozymes: a calorimetric study of the heat denaturation of equine lysozyme.
    Griko YV; Freire E; Privalov G; van Dael H; Privalov PL
    J Mol Biol; 1995 Sep; 252(4):447-59. PubMed ID: 7563064
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermodynamics of lectin-carbohydrate interactions. Titration microcalorimetry measurements of the binding of N-linked carbohydrates and ovalbumin to concanavalin A.
    Mandal DK; Kishore N; Brewer CF
    Biochemistry; 1994 Feb; 33(5):1149-56. PubMed ID: 8110746
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Energetics of cresols and of methylphenoxyl radicals.
    Richard LS; Bernardes CE; Diogo HP; Leal JP; da Piedade ME
    J Phys Chem A; 2007 Sep; 111(35):8741-8. PubMed ID: 17691757
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thermodynamics of cation binding to Nereis sarcoplasmic calcium-binding protein. Direct binding studies, microcalorimetry and conformational changes.
    Luan-Rilliet Y; Milos M; Cox JA
    Eur J Biochem; 1992 Aug; 208(1):133-8. PubMed ID: 1511682
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural studies on bovine prothrombin. Isolation and partial characterization of the Ca2+ binding and carbohydrate containing peptides of the N-terminus region.
    Benson BJ; Hanahan DJ
    Biochemistry; 1975 Jul; 14(14):3265-77. PubMed ID: 1170888
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Energetics of structural domains in alpha-lactalbumin.
    Hendrix TM; Griko Y; Privalov P
    Protein Sci; 1996 May; 5(5):923-31. PubMed ID: 8732764
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cadmium-113 NMR studies of bovine and human alpha-lactalbumin and equine lysozyme.
    Aramini JM; Hiraoki T; Ke Y; Nitta K; Vogel HJ
    J Biochem; 1995 Mar; 117(3):623-8. PubMed ID: 7629032
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Formation of CaSO4(aq) and CaSeO4(aq) studied as a function of ionic strength and temperature by CE.
    Philippini V; Aupiais J; Vercouter T; Moulin C
    Electrophoresis; 2009 Oct; 30(20):3582-90. PubMed ID: 19784954
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An experimental artifact in the use of chelating metal ion buffers. Binding of chelators to bovine alpha-lactalbumin.
    Kronman MJ; Bratcher SC
    J Biol Chem; 1983 May; 258(9):5707-9. PubMed ID: 6406505
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of heat treatment on denaturation of bovine alpha-lactalbumin: determination of kinetic and thermodynamic parameters.
    Wehbi Z; Pérez MD; Sánchez L; Pocoví C; Barbana C; Calvo M
    J Agric Food Chem; 2005 Dec; 53(25):9730-6. PubMed ID: 16332122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.