These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 4043403)

  • 1. Selected positions of acyl chains are affected differently by antibody binding which results in decreased membrane fluidity.
    Hart MJ; Kimura K; Nakanishi M
    FEBS Lett; 1985 Oct; 190(2):249-52. PubMed ID: 4043403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of binding reactions of an antibody molecule with haptens on a membrane surface.
    Kobayashi M; Nakanishi M; Tsuboi M
    J Biochem; 1982 Jan; 91(1):407-9. PubMed ID: 6896049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of antibodies with liposomes bearing fluorescent haptens.
    Petrossian A; Owicki JC
    Biochim Biophys Acta; 1984 Oct; 776(2):217-27. PubMed ID: 6477908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Location and dynamics of a membrane-bound fluorescent hapten. A spectroscopic study.
    Stanton SG; Kantor AB; Petrossian A; Owicki JC
    Biochim Biophys Acta; 1984 Oct; 776(2):228-36. PubMed ID: 6477909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium and kinetic parameters for the interaction of a monoclonal antibody with liposomes bearing fluorescent haptens.
    Petrossian A
    Cell Biophys; 1993; 23(1-3):111-37. PubMed ID: 7895247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Location of membrane-bound hapten with different length spacers.
    Kimura K; Arata Y; Yasuda T; Kinosita K; Nakanishi M
    Immunology; 1990 Feb; 69(2):323-8. PubMed ID: 2307487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quenching of fluorescein-conjugated lipids by antibodies. Quantitative recognition and binding of lipid-bound haptens in biomembrane models, formation of two-dimensional protein domains and molecular dynamics simulations.
    Ahlers M; Grainger DW; Herron JN; Lim K; Ringsdorf H; Salesse C
    Biophys J; 1992 Sep; 63(3):823-38. PubMed ID: 1420916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conformational model for the action of general anesthetics at the membrane level. II. Experimental observations on the effects of anesthetics on lipid fluidity and lipid protein interactions.
    Lenaz G; Mazzanti L; Curatola G; Bertoli E; Bigi A; Zolese G
    Ital J Biochem; 1978; 27(6):401-30. PubMed ID: 755801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of immunoglobulin G1 structure on macrophage binding to supported planar lipid monolayers.
    Kimura K; Nakanishi M; Ueda M; Ueno J; Nariuchi H; Furukawa S; Yasuda T
    Immunology; 1986 Oct; 59(2):235-8. PubMed ID: 3770803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune reactions of liposomes containing cardiolipin and their relation to membrane fluidity.
    Takashi T; Inoue K; Nojima S
    J Biochem; 1980 Mar; 87(3):679-85. PubMed ID: 7190143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane fluidity and lipid hapten structure of liposomes affect calcium signals in antigen-specific B cells.
    Ohyama N; Hamano T; Hamakawa N; Inagaki K; Nakanishi M
    Biochemistry; 1991 Nov; 30(46):11154-6. PubMed ID: 1718427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subclass-specific antibody-dependent binding of macrophages to supported planar lipid monolayer membranes.
    Kimura K; Nakanishi M
    FEBS Lett; 1985 Jul; 187(1):69-72. PubMed ID: 3839462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative contributions of cholesterol and the individual classes of phospholipids and their degree of fatty acyl (un)saturation to membrane fluidity measured by fluorescence polarization.
    van Blitterswijk WJ; van der Meer BW; Hilkmann H
    Biochemistry; 1987 Mar; 26(6):1746-56. PubMed ID: 3593687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence quenching measurements of the membrane bound lipid haptens with different length spacers.
    Kimura K; Arata Y; Yasuda T; Kinosita K; Nakanishi M
    Biochim Biophys Acta; 1992 Feb; 1104(1):9-14. PubMed ID: 1550857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent perturbation of the fluorescence of fluorescyl ligand bound to specific antibody. Fluorescence enhancement of antibody bound fluorescein (hapten) in deuterium oxide.
    Voss EW; Watt RM; Weber G
    Mol Immunol; 1980 Apr; 17(4):505-17. PubMed ID: 7393237
    [No Abstract]   [Full Text] [Related]  

  • 16. Antibody interaction with a membrane-bound fluorescent ligand on synthetic lipid vesicles.
    Luedtke R; Karush F
    Biochemistry; 1982 Nov; 21(23):5738-44. PubMed ID: 6817781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Availability of dinitrophenylated lipid haptens for specific antibody binding depends on the physical properties of host bilayer membranes.
    Balakrishnan K; Mehdi SQ; McConnell HM
    J Biol Chem; 1982 Jun; 257(11):6434-9. PubMed ID: 7076676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane sialoglycolipids regulate the activation of alternative complement pathway by liposomes containing trinitrophenylaminocaproyldipalmitoylphosphatidylethaolamine.
    Okada N; Yasuda T; Tsumita T; Okada H
    Immunology; 1983 Jan; 48(1):129-40. PubMed ID: 6848448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of antigen-sensitized liposomes with immobilized antibody: a homogeneous solid-phase immunoliposome assay.
    Ho RJ; Huang L
    J Immunol; 1985 Jun; 134(6):4035-40. PubMed ID: 3886794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and dynamical aspects of membrane immunochemistry using model membranes.
    Brûlet P; McConnell HM
    Biochemistry; 1977 Mar; 16(6):1209-17. PubMed ID: 191064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.