These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 4044425)

  • 1. Auditory structure and function in the bird middle ear: an evaluation by SEM and capacitive probe.
    Saunders JC
    Hear Res; 1985 Jun; 18(3):253-68. PubMed ID: 4044425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of a single-ossicle ear: I. The extra-stapedius of the pigeon.
    Gummer AW; Smolders JW; Klinke R
    Hear Res; 1989 May; 39(1-2):1-13. PubMed ID: 2737958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using average correction factors to improve the estimated sound pressure level near the tympanic membrane.
    LaRae Recker K; Zhang T; Lin W
    J Am Acad Audiol; 2012 Oct; 23(9):733-50. PubMed ID: 23072965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normative Wideband Reflectance, Equivalent Admittance at the Tympanic Membrane, and Acoustic Stapedius Reflex Threshold in Adults.
    Feeney MP; Keefe DH; Hunter LL; Fitzpatrick DF; Garinis AC; Putterman DB; McMillan GP
    Ear Hear; 2017; 38(3):e142-e160. PubMed ID: 28045835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative anatomy of the paratympanic organ (vitali organ) in the middle ear of birds and non-avian vertebrates: focus on alligators, parakeets and armadillos.
    Neeser JA; von Bartheld CS
    Brain Behav Evol; 2002; 60(2):65-79. PubMed ID: 12373059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eardrum and columella displacement in single ossicle ears under quasi-static pressure variations.
    Claes R; Muyshondt PGG; Van Assche F; Van Hoorebeke L; Aerts P; Dirckx JJJ
    Hear Res; 2018 Aug; 365():141-148. PubMed ID: 29804720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deformation of avian middle ear structures under static pressure loads, and potential regulation mechanisms.
    Claes R; Muyshondt PGG; Dirckx JJJ; Aerts P
    Zoology (Jena); 2018 Feb; 126():128-136. PubMed ID: 29157881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Middle ear structure in the chinchilla: a quantitative study.
    Vrettakos PA; Dear SP; Saunders JC
    Am J Otolaryngol; 1988; 9(2):58-67. PubMed ID: 3400821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Middle-ear response in the chinchilla and its relationship to mechanics at the base of the cochlea.
    Ruggero MA; Rich NC; Robles L; Shivapuja BG
    J Acoust Soc Am; 1990 Apr; 87(4):1612-29. PubMed ID: 2341666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency characteristics of sound transmission in middle ears from Norwegian cattle, and the effect of static pressure differences across the tympanic membrane and the footplate.
    Kringlebotn M
    J Acoust Soc Am; 2000 Mar; 107(3):1442-50. PubMed ID: 10738799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Middle-ear development: II. Morphometric changes in the conducting apparatus of the chick.
    Cohen YE; Hernandez HN; Saunders JC
    J Morphol; 1992 Jun; 212(3):257-67. PubMed ID: 1507239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How flexibility and eardrum cone shape affect sound conduction in single-ossicle ears: a dynamic model study of the chicken middle ear.
    Muyshondt PGG; Dirckx JJJ
    Biomech Model Mechanobiol; 2020 Feb; 19(1):233-249. PubMed ID: 31372910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Columella footplate motion and the cochlear microphonic potential in the embryo and hatchling chicken.
    Kim YS; Jones TA; Chertoff ME; Nunnally WC
    J Acoust Soc Am; 2006 Dec; 120(6):3811-21. PubMed ID: 17225408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay.
    Puria S; Allen JB
    J Acoust Soc Am; 1998 Dec; 104(6):3463-81. PubMed ID: 9857506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sex differences in the middle ear of the bullfrog (Rana catesbeiana).
    Mason MJ; Lin CC; Narins PM
    Brain Behav Evol; 2003; 61(2):91-101. PubMed ID: 12660445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Middle-ear development VII: umbo velocity in the neonatal rat.
    Doan DE; Igic PG; Saunders JC
    J Acoust Soc Am; 1996 Mar; 99(3):1566-72. PubMed ID: 8819853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional morphology of the paratympanic organ in the middle ear of birds.
    von Bartheld CS
    Brain Behav Evol; 1994; 44(2):61-73. PubMed ID: 7953609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors contributing to bone conduction: the outer ear.
    Stenfelt S; Wild T; Hato N; Goode RL
    J Acoust Soc Am; 2003 Feb; 113(2):902-13. PubMed ID: 12597184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling sound transmission of human middle ear and its clinical applications using finite element analysis.
    Chen SI; Lee MH; Yao CM; Chen PR; Chou YF; Liu TC; Song YL; Lee CF
    Kaohsiung J Med Sci; 2013 Mar; 29(3):133-9. PubMed ID: 23465416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of fixation of superior mallear ligament and anterior mallear ligament on the middle ear transfer function-finite element modeling].
    Huang H; Wang J
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2016 Dec; 30(24):1935-1939. PubMed ID: 29798268
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.