These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 4044531)

  • 61. Mode of infection, nodulation specificity, and indigenous plasmids of 11 fast-growing Rhizobium japonicum strains.
    Heron DS; Pueppke SG
    J Bacteriol; 1984 Dec; 160(3):1061-6. PubMed ID: 6542099
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Rhizobium japonicum mutants that are hypersensitive to repression of H2 uptake by oxygen.
    Maier RJ; Merberg DM
    J Bacteriol; 1982 Apr; 150(1):161-7. PubMed ID: 6277861
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Protoporphyrin formation in Rhizobium japonicum.
    Keithly JH; Nadler KD
    J Bacteriol; 1983 May; 154(2):838-45. PubMed ID: 6841317
    [TBL] [Abstract][Full Text] [Related]  

  • 64. An overview of the metabolic differences between Bradyrhizobium japonicum 110 bacteria and differentiated bacteroids from soybean (Glycine max) root nodules: an in vitro 13C- and 31P-nuclear magnetic resonance spectroscopy study.
    Vauclare P; Bligny R; Gout E; Widmer F
    FEMS Microbiol Lett; 2013 Jun; 343(1):49-56. PubMed ID: 23480054
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Water stress plating hypersensitivity of yeasts: protective role of trehalose in Saccharomyces cerevisiae.
    Mackenzie KF; Singh KK; Brown AD
    J Gen Microbiol; 1988 Jun; 134(6):1661-6. PubMed ID: 3065453
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A model of nitrogen flow by malonamate in Rhizobium japonicum-soybean symbiosis.
    Kim YS; Chae HZ
    Biochem Biophys Res Commun; 1990 Jun; 169(2):692-9. PubMed ID: 2357226
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Carbohydrates in Soybean Nodules: II. DISTRIBUTION OF COMPOUNDS IN SEEDLINGS DURING THE ONSET OF NITROGEN FIXATION.
    Streeter JG
    Plant Physiol; 1980 Sep; 66(3):471-6. PubMed ID: 16661458
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A 13C comparative nuclear magnetic resonance study of organic solute production and excretion by the yeasts Hansenula anomala and Saccharomyces cerevisiae in saline media.
    Bellinger Y; Larher F
    Can J Microbiol; 1988 May; 34(5):605-12. PubMed ID: 3061619
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Cytochrome aa3 gene regulation in members of the family Rhizobiaceae: comparison of copper and oxygen effects in Bradyrhizobium japonicum and Rhizobium tropici.
    Gabel C; Bittinger MA; Maier RJ
    Appl Environ Microbiol; 1994 Jan; 60(1):141-8. PubMed ID: 8117073
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ammonia assimilation by rhizobium cultures and bacteroids.
    Brown CM; Dilworth MJ
    J Gen Microbiol; 1975 Jan; 86(1):39-48. PubMed ID: 234505
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Effect of cultivation conditions on the accumulation of poly-beta-hydroxy-butyric acid in Rhizobium lupini].
    Yushkova LA; Fedulova NG; Romanov VI; Kretovich WL
    Prikl Biokhim Mikrobiol; 1975; 11(2):203-6. PubMed ID: 1208373
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Aerobic metabolism of trehalose in the taxonomy of coagulase negative staphylococci.
    Erasmus JA
    Onderstepoort J Vet Res; 1988 Mar; 55(1):73-4. PubMed ID: 3353103
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Enzymes of alpha,alpha-Trehalose Metabolism in Soybean Nodules.
    Salminen SO; Streeter JG
    Plant Physiol; 1986 Jun; 81(2):538-41. PubMed ID: 16664852
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Symbiotic Effectiveness and Host-Strain Interactions of Rhizobium fredii USDA 191 on Different Soybean Cultivars.
    Israel DW; Mathis JN; Barbour WM; Elkan GH
    Appl Environ Microbiol; 1986 May; 51(5):898-903. PubMed ID: 16347066
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Trehalose metabolism by Bacillus popilliae.
    Bhumiratana A; Anderson RL; Costilow RN
    J Bacteriol; 1974 Aug; 119(2):484-93. PubMed ID: 4369400
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Biosynthesis of trehalose from maltooligosaccharides in Rhizobia.
    Streeter JG; Bhagwat A
    Can J Microbiol; 1999 Aug; 45(8):716-21. PubMed ID: 10528404
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Oxyleghemoglobin-mediated Hydrogen Oxidation by Rhizobium japonicum USDA 122 DES Bacteroids.
    Emerich DW; Albrecht SL; Russell SA; Ching T; Evans HJ
    Plant Physiol; 1980 Apr; 65(4):605-9. PubMed ID: 16661247
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Carbohydrate, organic Acid, and amino Acid composition of bacteroids and cytosol from soybean nodules.
    Streeter JG
    Plant Physiol; 1987 Nov; 85(3):768-73. PubMed ID: 16665774
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Degradation of 4-aminobenzenesulfonate by a two-species bacterial coculture. Physiological interactions between Hydrogenophaga palleronii S1 and Agrobacterium radiobacter S2.
    Dangmann E; Stolz A; Kuhm AE; Hammer A; Feigel B; Noisommit-Rizzi N; Rizzi M; Reuss M; Knackmuss HJ
    Biodegradation; 1996 Jun; 7(3):223-9. PubMed ID: 8782393
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Comparative study of the formation of glycogen and trehalose during starvation in the Lepidoptera Bombyx mori L].
    Baud L; Pascal M
    Ann Nutr Aliment; 1977; 31(3):323-9. PubMed ID: 931265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.