These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 4045933)

  • 1. Ethyl-methanesulfonate-induced changes in filarial susceptibility in Aedes aegypti (Diptera: Culicidae).
    Rodriguez PH
    J Med Entomol; 1985 Jul; 22(4):366-9. PubMed ID: 4045933
    [No Abstract]   [Full Text] [Related]  

  • 2. Reduction in susceptibility to Brugia malayi of F2 progeny of Aedes togoi treated with ethyl methanesulfonate.
    Rodriguez PH; Castillon R; Wilson P; Benoit D; Nasr-Schirf D
    J Am Mosq Control Assoc; 1999 Dec; 15(4):458-62. PubMed ID: 10612608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further evidence that the genes controlling susceptibility of Aedes aegypti to filarial parasites function independently.
    Wattam AR; Christensen BM
    J Parasitol; 1992 Dec; 78(6):1092-5. PubMed ID: 1491306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aedes aegypti: a quantitative trait locus (QTL) influencing filarial worm intensity is linked to QTL for susceptibility to other mosquito-borne pathogens.
    Beerntsen BT; Severson DW; Klinkhammer JA; Kassner VA; Christensen BM
    Exp Parasitol; 1995 Nov; 81(3):355-62. PubMed ID: 7498432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of developing Brugia pahangi on spontaneous flight activity of Aedes aegypti (Diptera: Culicidae).
    Berry WJ; Rowley WA; Christensen BM
    J Med Entomol; 1986 Jul; 23(4):441-5. PubMed ID: 3735352
    [No Abstract]   [Full Text] [Related]  

  • 6. Reduction in the susceptibility of Aedes aegypti to Brugia malayi infection after treatment with ethyl methanesulfonate.
    Rodriguez PH; Lazaro C; Castillon R
    J Am Mosq Control Assoc; 1992 Dec; 8(4):416-8. PubMed ID: 1474390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental effects of Brugia pahangi (Nematoda: Filarioidea) to high temperature in susceptible genotypes of Aedes aegypti (Diptera: Culicidae).
    Rodriguez PH
    J Med Entomol; 1975 Oct; 12(4):447-50. PubMed ID: 1195293
    [No Abstract]   [Full Text] [Related]  

  • 8. Laboratory transmission of Brugia pahangi by nulliparous Aedes aegypti (Diptera: Culicidae).
    Klowden MJ; Lea AO
    J Med Entomol; 1981 Sep; 18(5):383-5. PubMed ID: 7299793
    [No Abstract]   [Full Text] [Related]  

  • 9. [Preliminary report on the susceptibility of mosquitoes to Brugia pahangi].
    Wu CC; Ho CM; Fan PC
    Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi; 1984 Aug; 17(3):156-60. PubMed ID: 6150813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aedes (Finlaya) togoi Theobald 1907, Chanthaburi strain, a laboratory vector in studies of filariasis in Thailand.
    Choochote W; Keha P; Sukhavat K; Khamboonruang C; Sukontason K
    Southeast Asian J Trop Med Public Health; 1987 Jun; 18(2):259-60. PubMed ID: 3313743
    [No Abstract]   [Full Text] [Related]  

  • 11. Development of Brugia malayi and Dirofilaria immitis in Aedes aegypti: effect of the host's nutrition.
    Travi BL; Orihel TC
    Trop Med Parasitol; 1987 Mar; 38(1):19-22. PubMed ID: 3602836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative development of Brugia malayi in susceptible and refractory genotypes of Aedes aegypti.
    Rodriguez PH; Torres C; Marotta JA
    J Parasitol; 1984 Dec; 70(6):1001-2. PubMed ID: 6527177
    [No Abstract]   [Full Text] [Related]  

  • 13. Aedes aegypti (Diptera: Culicidae) in Mauritania: First Report on the Presence of the Arbovirus Mosquito Vector in Nouakchott.
    Mint Lekweiry K; Ould Ahmedou Salem MS; Ould Brahim K; Ould Lemrabott MA; Brengues C; Faye O; Simard F; Ould Mohamed Salem Boukhary A
    J Med Entomol; 2015 Jul; 52(4):730-3. PubMed ID: 26335483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosomal mapping of two loci affecting filarial worm susceptibility in Aedes aegypti.
    Severson DW; Mori A; Zhang Y; Christensen BM
    Insect Mol Biol; 1994 May; 3(2):67-72. PubMed ID: 7987523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aedes aegypti: characterization of a hemolymph polypeptide expressed during melanotic encapsulation of filarial worms.
    Beerntsen BT; Severson DW; Christensen BM
    Exp Parasitol; 1994 Nov; 79(3):312-21. PubMed ID: 7957753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Mendelian inheritance of mosquito susceptibility to infection with Brugia malayi and Brugia pahangi.
    Trpis M; Duhrkopf RE; Parker KL
    Science; 1981 Mar; 211(4489):1435-7. PubMed ID: 7466401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybridization and mating behavior in Aedes aegypti (Diptera: Culicidae).
    Moore DF
    J Med Entomol; 1979 Oct; 16(3):223-6. PubMed ID: 537005
    [No Abstract]   [Full Text] [Related]  

  • 18. The influence of the gene sb in Culex pipiens on the development of sub-periodic Brugia malayi and Wuchereria bancrofti.
    Obiamiwe BA
    Ann Trop Med Parasitol; 1977 Dec; 71(4):487-90. PubMed ID: 596959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pattern of flight muscle damage in relation to the distribution of developing filarial larvae in Aedes aegypti and Mansonia uniformis.
    Beckett EB
    Ann Trop Med Parasitol; 1974 Sep; 68(3):353-7. PubMed ID: 4155607
    [No Abstract]   [Full Text] [Related]  

  • 20. Characterization of three microsatellite loci for Aedes aegypti (Diptera: Culicidae) and their use for population genetic study.
    Barbazan P; Dardaine J; Gonzalez JP; Phuangkoson N; Cuny G
    Southeast Asian J Trop Med Public Health; 1999 Sep; 30(3):482-3. PubMed ID: 10774655
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.