These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 4046872)

  • 1. A simple method for determining the homoporous solute-membrane permeability from plasma-to-lymph measurements.
    Groome LJ; Kinasewitz GT
    Microvasc Res; 1985 Sep; 30(2):235-41. PubMed ID: 4046872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of crosspoint and least-squares regression methods in computation of membrane protein flux parameters from lymph flux analysis.
    Katz MA
    Microvasc Res; 1985 Sep; 30(2):207-21. PubMed ID: 4046870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deficiencies in pore-membrane models of microvascular fluid and solute transudation.
    Winn R; Nadir B; Gleisner J; Stothert J; Hildebrandt J
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Dec; 51(6):1574-80. PubMed ID: 7319886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of lymphatic protein flux data. V. Unique PS products and sigma dS at low lymph flows.
    Reed RK; Townsley MI; Korthuis RJ; Taylor AE
    Am J Physiol; 1991 Sep; 261(3 Pt 2):H728-40. PubMed ID: 1887920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of lymphatic cannula outflow height on lung microvascular permeability estimations.
    Laine GA; Drake RE; Zavisca FG; Gabel JC
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Nov; 57(5):1412-6. PubMed ID: 6520034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On equations for combined convective and diffusive transport of neutral solute across porous membranes.
    Bresler EH; Groome LJ
    Am J Physiol; 1981 Nov; 241(5):F469-76. PubMed ID: 7304743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of capillary reflection coefficients and unique PS products in dog paw.
    Reed RK; Townsley MI; Taylor AE
    Am J Physiol; 1989 Sep; 257(3 Pt 2):H1037-41. PubMed ID: 2782428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion and convection across heteroporous membranes: a simple macroscopic equation.
    Groome LJ; Kinasewitz GT; Diana JN
    Microvasc Res; 1983 Nov; 26(3):307-22. PubMed ID: 6656666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New formulation of water and macromolecular flux which corrects for non-ideality: theory and derivation, predictions, and experimental results.
    Katz MA
    J Theor Biol; 1985 Jan; 112(2):369-401. PubMed ID: 3982044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative assessment of microvascular permeability in endotoxin-induced lung injury in anaesthetized dogs.
    Ishibashi M; Yoshida M; Hirose T
    Jpn J Physiol; 1986; 36(5):959-69. PubMed ID: 3550187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Appraisal of equations for neutral solute flux across porous sieving membranes.
    Bresler EH; Mason EA; Wendt RP
    Biophys Chem; 1976 May; 4(3):229-36. PubMed ID: 949524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osmotic flow equations for leaky porous membranes.
    Hill AE
    Proc R Soc Lond B Biol Sci; 1989 Aug; 237(1288):369-77. PubMed ID: 2571158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of water and protein transport through and around the canine medial iliac lymph nodes.
    Katz MA; Starr JF
    Microcirc Endothelium Lymphatics; 1984 Dec; 1(6):727-54. PubMed ID: 6546162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of macromolecules across microvascular walls: the two-pore theory.
    Rippe B; Haraldsson B
    Physiol Rev; 1994 Jan; 74(1):163-219. PubMed ID: 8295933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of microvascular transport pathways in skeletal muscle.
    Wolf MB
    Am J Physiol; 1994 Jul; 267(1 Pt 2):H383-99. PubMed ID: 8048604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The determination of membrane permeability coefficients of canine pancreatic islet cells and their application to islet cryopreservation.
    Liu J; Zieger MA; Lakey JR; Woods EJ; Critser JK
    Cryobiology; 1997 Aug; 35(1):1-13. PubMed ID: 9245505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane permeability modeling: Kedem-Katchalsky vs a two-parameter formalism.
    Kleinhans FW
    Cryobiology; 1998 Dec; 37(4):271-89. PubMed ID: 9917344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid filtration and protein clearances through large and small pore populations in dog lung capillaries.
    Parker JC; Rippe B; Taylor AE
    Microvasc Res; 1986 Jan; 31(1):1-17. PubMed ID: 3959908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing Kedem-Katchalsky equations of the transmembrane transport for binary nonhomogeneous non-electrolyte solutions.
    Slezak A; JarzyƄska M
    Polim Med; 2005; 35(1):15-20. PubMed ID: 16050073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased pulmonary microvasuclar permeability induced by alpha-naphthylthiourea.
    Rutili G; Kvietys P; Martin D; Parker JC; Taylor AE
    J Appl Physiol Respir Environ Exerc Physiol; 1982 May; 52(5):1316-23. PubMed ID: 6807946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.