These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 40475)

  • 21. The effects of noise upon the electrical activity of the cat cortex.
    Roig Varela JA
    Acta Physiol Lat Am; 1975; 25(2):134-40. PubMed ID: 1227242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EEG processing by the Cerebral Function Monitor (CFM).
    Maynard DE
    Ann Anesthesiol Fr; 1979; 20(3):170-4. PubMed ID: 40470
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synchronous unit activity and local field potentials evoked in the subthalamic nucleus by cortical stimulation.
    Magill PJ; Sharott A; Bevan MD; Brown P; Bolam JP
    J Neurophysiol; 2004 Aug; 92(2):700-14. PubMed ID: 15044518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The cerebral control of the somatosensory and auditory afferent projections to the cerebral cortex in man and animals].
    Liubimov NN; Orlova TV; Liubimov SN
    Usp Fiziol Nauk; 1998; 29(3):3-20. PubMed ID: 9749454
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Responses of spinothalamic lamina I neurons to maintained noxious mechanical stimulation in the cat.
    Andrew D; Craig AD
    J Neurophysiol; 2002 Apr; 87(4):1889-901. PubMed ID: 11929909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Neurochemical analysis and pharmacological regulation of the corticofugal control of the nociceptive signals in the afferent pathways].
    Churiukanov VV
    Eksp Klin Farmakol; 2003; 66(2):24-31. PubMed ID: 12962044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hemodynamic signals correlate tightly with synchronized gamma oscillations.
    Niessing J; Ebisch B; Schmidt KE; Niessing M; Singer W; Galuske RA
    Science; 2005 Aug; 309(5736):948-51. PubMed ID: 16081740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The dynamics of superslow oscillations in multineuronal activity and bioelectrical potentials of the cat brain during unreinforced photic stimulation].
    Lavrov VV
    Fiziol Zh SSSR Im I M Sechenova; 1989 Jul; 75(7):890-8. PubMed ID: 2806663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cortical interactions and integration of nociceptive and non-nociceptive somatosensory inputs in humans.
    Mouraux A; Plaghki L
    Neuroscience; 2007 Nov; 150(1):72-81. PubMed ID: 17976921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A role for wind-up in trigeminal sensory processing: intensity coding of nociceptive stimuli in the rat.
    Coste J; Voisin DL; Luccarini P; Dallel R
    Cephalalgia; 2008 Jun; 28(6):631-9. PubMed ID: 18422721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensory evoked potentials and their changes with respiration in man and cat.
    Shimamura M; Mori A
    Electroencephalogr Clin Neurophysiol Suppl; 1982; 36():297-304. PubMed ID: 6962025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of short latency cortical responses to somatosensory and acoustic stimuli in anterior part of middle suprasylvian gyrus of cat's brain.
    Petrek J; Kulikov GA
    Act Nerv Super (Praha); 1983 Dec; 25(4):247-55. PubMed ID: 6666511
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial interactions and stimulus-response relations of unit responses evoked by somato-sensory stimuli in the feline caudal medullary reticular formation.
    Such G; Hidvégi Z
    Acta Physiol Acad Sci Hung; 1979; 54(3):231-44. PubMed ID: 554439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intraoperative electrocorticography and cortical stimulation in children.
    Gallentine WB; Mikati MA
    J Clin Neurophysiol; 2009 Apr; 26(2):95-108. PubMed ID: 19279495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effectiveness of low-frequency stimulation for mapping cortical function.
    Zangaladze A; Sharan A; Evans J; Wyeth DH; Wyeth EG; Tracy JI; Chervoneva I; Sperling MR
    Epilepsia; 2008 Mar; 49(3):481-7. PubMed ID: 17868054
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The value to the anaesthetist of monitoring cerebral activity.
    Langford RM; Thomsen CE
    Methods Inf Med; 1994 Mar; 33(1):133-8. PubMed ID: 8177064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The cerebral function analysing monitor. Initial clinical experience, application and further development.
    Maynard DE; Jenkinson JL
    Anaesthesia; 1984 Jul; 39(7):678-90. PubMed ID: 6465492
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Presentation of equipment: the monitor of cerebral function].
    Dubois M
    Ann Anesthesiol Fr; 1975 Nov; 16(7):519-28. PubMed ID: 7981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The Cerebral Function Monitor in intensive care].
    Romano P; Margenet A; Gaben MC; Hrouda P
    Ann Anesthesiol Fr; 1979; 20(3):240-2. PubMed ID: 40480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The cerebral function analysing monitor (CFAM). A new microprocessor-based device for the on-line analysis of the EEG and evoked potentials.
    Sebel PS; Maynard DE; Major E; Frank M
    Br J Anaesth; 1983 Dec; 55(12):1265-70. PubMed ID: 6652016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.