These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 404937)

  • 1. Poly(organophosphazenes)--unusual new high polymers.
    Allock HR
    Angew Chem Int Ed Engl; 1977 Mar; 16(3):147-56. PubMed ID: 404937
    [No Abstract]   [Full Text] [Related]  

  • 2. Chemically crosslinkable thermosensitive polyphosphazene gels as injectable materials for biomedical applications.
    Potta T; Chun C; Song SC
    Biomaterials; 2009 Oct; 30(31):6178-92. PubMed ID: 19709738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, synthesis and evaluation of graftable thrombin inhibitors for the preparation of blood-compatible polymer materials.
    Salvagnini C; Michaux C; Remiche J; Wouters J; Charlier P; Marchand-Brynaert J
    Org Biomol Chem; 2005 Dec; 3(23):4209-20. PubMed ID: 16294249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes.
    Singh A; Krogman NR; Sethuraman S; Nair LS; Sturgeon JL; Brown PW; Laurencin CT; Allcock HR
    Biomacromolecules; 2006 Mar; 7(3):914-8. PubMed ID: 16529431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Report on the use of poly(organophosphazenes) for the design of stimuli-responsive vesicles.
    Couffin-Hoarau AC; Leroux JC
    Biomacromolecules; 2004; 5(6):2082-7. PubMed ID: 15530020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential for poly-alpha-amino acids as biomaterials.
    Anderson JM; Gibbons DF; Martin RL; Hiltner A; Woods R
    J Biomed Mater Res; 1974; 8(3):197-207. PubMed ID: 4455698
    [No Abstract]   [Full Text] [Related]  

  • 7. Thermal degradation of polymers to polymeric carbon--an approach to the synthesis of new materials.
    Fitzer E
    Angew Chem Int Ed Engl; 1980 May; 19(5):375-85. PubMed ID: 6773441
    [No Abstract]   [Full Text] [Related]  

  • 8. Ion and pH effect on the lower critical solution temperature phase behavior in neutral and acidic poly(organophosphazene) counterparts.
    Ahn S; Monge EC; Song SC
    Langmuir; 2009 Feb; 25(4):2407-18. PubMed ID: 19140714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Biodegradable co-polymers of amino acids and synthetic polymers].
    Lipatova TE; Vasil'chenko DV; Pkhakadze GA
    Ukr Biokhim Zh (1978); 1984; 56(5):562-76. PubMed ID: 6390891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray studies on the conformation of poly-N -carbobenzoxy-L- , -diaminobutyric acid and poly-N -carbobenzoxy-L-ornithine.
    Del Pra A; Spadon P; Valle G
    Biopolymers; 1973 Apr; 12(4):941-4. PubMed ID: 4695688
    [No Abstract]   [Full Text] [Related]  

  • 11. Synthetic polymers containing alpha-amino acids: from polyamides to poly(ester amide)s.
    PuiggalĂ­ J; Subirana JA
    J Pept Sci; 2005 May; 11(5):247-9. PubMed ID: 15685716
    [No Abstract]   [Full Text] [Related]  

  • 12. Synthesis, characterization, and osteocompatibility evaluation of novel alanine-based polyphosphazenes.
    Nair LS; Lee DA; Bender JD; Barrett EW; Greish YE; Brown PW; Allcock HR; Laurencin CT
    J Biomed Mater Res A; 2006 Jan; 76(1):206-13. PubMed ID: 16265637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Irradiation crosslinking of the polytetrapeptide of elastin and compounding to dacron to produce a potential prosthetic material with elasticity and strength.
    Urry DW; Harris RD; Long MM
    J Biomed Mater Res; 1982 Jan; 16(1):11-6. PubMed ID: 6460035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Chemical and physical bases of synthetic materials used in ophthalmology].
    Hinrichsen G; Eberhardt A
    Ber Zusammenkunft Dtsch Ophthalmol Ges; 1978; (75):11-9. PubMed ID: 743085
    [No Abstract]   [Full Text] [Related]  

  • 15. Amphiphilic block copolymers based on poly(2-acryloyloxyethyl phosphorylcholine) prepared via RAFT polymerisation as biocompatible nanocontainers.
    Stenzel MH; Barner-Kowollik C; Davis TP; Dalton HM
    Macromol Biosci; 2004 Apr; 4(4):445-53. PubMed ID: 15468236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replacement of plasma by high molecular weight substances.
    Appel W; Biekert E
    Angew Chem Int Ed Engl; 1968 Sep; 7(9):702-8. PubMed ID: 4972317
    [No Abstract]   [Full Text] [Related]  

  • 17. Biodegradable thermoplastic polyurethanes incorporating polyhedral oligosilsesquioxane.
    Knight PT; Lee KM; Qin H; Mather PT
    Biomacromolecules; 2008 Sep; 9(9):2458-67. PubMed ID: 18698847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Polymers for medicine].
    Paul D; Gröbe V
    Z Arztl Fortbild (Jena); 1978 Jan; 72(1):44-8. PubMed ID: 645119
    [No Abstract]   [Full Text] [Related]  

  • 19. Spontaneously forming hydrogel from water-soluble random- and block-type phospholipid polymers.
    Kimura M; Fukumoto K; Watanabe J; Takai M; Ishihara K
    Biomaterials; 2005 Dec; 26(34):6853-62. PubMed ID: 15978662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled release using a new bioerodible polyphosphazene matrix system.
    Laurencin CT; Koh HJ; Neenan TX; Allcock HR; Langer R
    J Biomed Mater Res; 1987 Oct; 21(10):1231-46. PubMed ID: 3693386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.