BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 4050351)

  • 1. Changes in the integrity of the blood-brain barrier in suckling rats with low dose lead encephalopathy.
    Sundström R; Müntzing K; Kalimo H; Sourander P
    Acta Neuropathol; 1985; 68(1):1-9. PubMed ID: 4050351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular edema and glial response to it in the cerebellum of suckling rats with low-dose lead encephalopathy. An electron microscopic and immunohistochemical study.
    Sundström R; Kalimo H
    Acta Neuropathol; 1987; 75(2):116-22. PubMed ID: 3434220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vulnerability to lead in protein-deprived suckling rats.
    Sundström R; Conradi NG; Sourander P
    Acta Neuropathol; 1984; 62(4):276-83. PubMed ID: 6730906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myelin basic protein in brains of rats with low dose lead encephalopathy.
    Sundström R; Karlsson B
    Arch Toxicol; 1987 Feb; 59(5):341-5. PubMed ID: 2437882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood-brain barrier leakage and brain edema in stroke-prone spontaneously hypertensive rats. Effect of chronic sympathectomy and low protein/high salt diet.
    Fredriksson K; Kalimo H; Westergren I; Kåhrström J; Johansson BB
    Acta Neuropathol; 1987; 74(3):259-68. PubMed ID: 3673518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood-brain barrier dysfunction in acute lead encephalopathy: a reappraisal.
    Bouldin TW; Mushak P; O'Tuama LA; Krigman MR
    Environ Health Perspect; 1975 Dec; 12():81-8. PubMed ID: 1227864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regressive or lethal lead encephalopathy in the suckling rat. Correlation of lead levels and morphological findings.
    Lefauconnier JM; Hauw JJ; Bernard G
    J Neuropathol Exp Neurol; 1983 Mar; 42(2):177-90. PubMed ID: 6827289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood-brain barrier permeability, cerebral edema, and neurologic function after closed head injury in rats.
    Shapira Y; Setton D; Artru AA; Shohami E
    Anesth Analg; 1993 Jul; 77(1):141-8. PubMed ID: 8317722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A transient hypertensive opening of the blood-brain barrier can lead to brain damage. Extravasation of serum proteins and cellular changes in rats subjected to aortic compression.
    Sokrab TE; Johansson BB; Kalimo H; Olsson Y
    Acta Neuropathol; 1988; 75(6):557-65. PubMed ID: 3376759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute exposure to sarin increases blood brain barrier permeability and induces neuropathological changes in the rat brain: dose-response relationships.
    Abdel-Rahman A; Shetty AK; Abou-Donia MB
    Neuroscience; 2002; 113(3):721-41. PubMed ID: 12150792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of lead in the cerebellum of suckling rats following low and high dose lead exposure. A micro-PIXE analysis.
    Lindh U; Conradi NG; Sourander P
    Acta Neuropathol; 1989; 79(2):149-53. PubMed ID: 2596264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maturation of resistance to lead encephalopathy: cellular and subcellular mechanisms.
    Holtzman D; DeVries C; Nguyen H; Olson J; Bensch K
    Neurotoxicology; 1984; 5(3):97-124. PubMed ID: 6542983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunological targeting of the endothelial barrier antigen (EBA) in vivo leads to opening of the blood-brain barrier.
    Ghabriel MN; Zhu C; Hermanis G; Allt G
    Brain Res; 2000 Sep; 878(1-2):127-35. PubMed ID: 10996143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of extracellular proteins in the dynamics of vasogenic brain edema.
    Kuroiwa T; Cahn R; Juhler M; Goping G; Campbell G; Klatzo I
    Acta Neuropathol; 1985; 66(1):3-11. PubMed ID: 3993334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurotoxicity of 1,3,5-trinitrobenzene (TNB): immunohistochemical study of cerebrovascular permeability.
    Chandra AM; Campbell GA; Reddy G; Qualls CW
    Vet Pathol; 1999 May; 36(3):212-20. PubMed ID: 10332829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of nanoparticles on blood-brain barrier permeability and brain edema formation in rats.
    Sharma HS; Hussain S; Schlager J; Ali SF; Sharma A
    Acta Neurochir Suppl; 2010; 106():359-64. PubMed ID: 19812977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased blood-brain barrier permeability following acute short-term swimming exercise in conscious normotensive young rats.
    Sharma HS; Cervós-Navarro J; Dey PK
    Neurosci Res; 1991 Apr; 10(3):211-21. PubMed ID: 1650437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Animal models of human disease: severe and mild lead encephalopathy in the neonatal rat.
    Michaelson IA; Sauerhoff MW
    Environ Health Perspect; 1974 May; 7():201-25. PubMed ID: 4831141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sleep Deprivation-Induced Blood-Brain Barrier Breakdown and Brain Dysfunction are Exacerbated by Size-Related Exposure to Ag and Cu Nanoparticles. Neuroprotective Effects of a 5-HT3 Receptor Antagonist Ondansetron.
    Sharma A; Muresanu DF; Lafuente JV; Patnaik R; Tian ZR; Buzoianu AD; Sharma HS
    Mol Neurobiol; 2015 Oct; 52(2):867-81. PubMed ID: 26133300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tolerance to pentylentetrazol-induced convulsions and protection of cerebrovascular integrity by chronic nicotine.
    Uzüm G; Bahçekapili N; Diler AS; Ziylan YZ
    Int J Neurosci; 2004 Jun; 114(6):735-48. PubMed ID: 15204062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.