These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 4051011)
1. Effect of fatty acid oxidation on efficiency of energy production in rat heart. Hütter JF; Piper HM; Spieckerman PG Am J Physiol; 1985 Oct; 249(4 Pt 2):H723-8. PubMed ID: 4051011 [TBL] [Abstract][Full Text] [Related]
2. Cellular and mitochondrial energy metabolism in the stunned myocardium. Demaison L; Grynberg A Basic Res Cardiol; 1994; 89(4):293-307. PubMed ID: 7826305 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of fatty acid oxidation and decrease of oxygen consumption of working rat heart by 4-bromocrotonic acid. Hütter JF; Schweickhardt C; Piper HM; Spieckermann PG J Mol Cell Cardiol; 1984 Jan; 16(1):105-8. PubMed ID: 6699916 [TBL] [Abstract][Full Text] [Related]
4. Influence of calcium-induced workload transitions and fatty acid supply on myocardial substrate selection. Ala-Rämi A; Ylihautala M; Ingman P; Hassinen IE Metabolism; 2005 Mar; 54(3):410-20. PubMed ID: 15736122 [TBL] [Abstract][Full Text] [Related]
5. Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts. el Alaoui-Talibi Z; Landormy S; Loireau A; Moravec J Am J Physiol; 1992 Apr; 262(4 Pt 2):H1068-74. PubMed ID: 1533101 [TBL] [Abstract][Full Text] [Related]
6. Effect of chronic hypoxia on hepatic triacylglycerol concentration and mitochondrial fatty acid oxidizing capacity in liver and heart. Kinnula VL; Hassinen I Acta Physiol Scand; 1978 Jan; 102(1):64-73. PubMed ID: 626089 [TBL] [Abstract][Full Text] [Related]
7. Effects of pent-4-enoate on cellular redox state, glycolysis and fatty acid oxidation in isolated perfused rat heart. Hiltunen JK; Jauhonen VP; Savolainen MJ; Hassinen IE Biochem J; 1978 Feb; 170(2):235-40. PubMed ID: 205208 [TBL] [Abstract][Full Text] [Related]
8. Respiratory control in heart muscle during fatty acid oxidation. Energy state or substrate-level regulation by Ca2+? Vuorinen KH; Ala-Rämi A; Yan Y; Ingman P; Hassinen IE J Mol Cell Cardiol; 1995 Aug; 27(8):1581-91. PubMed ID: 8523421 [TBL] [Abstract][Full Text] [Related]
9. Postischemic recovery of heart metabolism and function: role of mitochondrial fatty acid transfer. Montessuit C; Papageorgiou I; Tardy-Cantalupi I; Rosenblatt-Velin N; Lerch R J Appl Physiol (1985); 2000 Jul; 89(1):111-9. PubMed ID: 10904042 [TBL] [Abstract][Full Text] [Related]
10. Competition between lactate and fatty acids as sources of ATP in the isolated working rat heart. Schönekess BO J Mol Cell Cardiol; 1997 Oct; 29(10):2725-33. PubMed ID: 9344767 [TBL] [Abstract][Full Text] [Related]
11. Myocardial fatty acid oxidation during ischemia and reperfusion. Lerch R; Tamm C; Papageorgiou I; Benzi RH Mol Cell Biochem; 1992 Oct; 116(1-2):103-9. PubMed ID: 1282666 [TBL] [Abstract][Full Text] [Related]
12. Stimulation of long-chain fatty acid uptake by dipyridamole in isolated myocytes. Abdel-aleem S; El-Guindy N; Sallam TI; Hughes GC; Lowe JE J Cardiovasc Pharmacol; 1999 Jan; 33(1):43-8. PubMed ID: 9890395 [TBL] [Abstract][Full Text] [Related]
13. Validation of 18F-fluoro-4-thia-palmitate as a PET probe for myocardial fatty acid oxidation: effects of hypoxia and composition of exogenous fatty acids. DeGrado TR; Kitapci MT; Wang S; Ying J; Lopaschuk GD J Nucl Med; 2006 Jan; 47(1):173-81. PubMed ID: 16391202 [TBL] [Abstract][Full Text] [Related]
14. A novel partial fatty acid oxidation inhibitor decreases myocardial oxygen consumption and improves cardiac efficiency in demand-induced ischemic heart. Wu L; Belardinelli L; Fraser H J Cardiovasc Pharmacol; 2008 Apr; 51(4):372-9. PubMed ID: 18427280 [TBL] [Abstract][Full Text] [Related]
15. Acute and chronic effects of adriamycin on fatty acid oxidation in isolated cardiac myocytes. Abdel-aleem S; el-Merzabani MM; Sayed-Ahmed M; Taylor DA; Lowe JE J Mol Cell Cardiol; 1997 Feb; 29(2):789-97. PubMed ID: 9140835 [TBL] [Abstract][Full Text] [Related]
16. Adenosine modification of energy substrate use in isolated hearts perfused with fatty acids. Finegan BA; Clanachan AS; Coulson CS; Lopaschuk GD Am J Physiol; 1992 May; 262(5 Pt 2):H1501-7. PubMed ID: 1590454 [TBL] [Abstract][Full Text] [Related]
17. Ketones can become the major fuel source for the heart but do not increase cardiac efficiency. Ho KL; Karwi QG; Wagg C; Zhang L; Vo K; Altamimi T; Uddin GM; Ussher JR; Lopaschuk GD Cardiovasc Res; 2021 Mar; 117(4):1178-1187. PubMed ID: 32402081 [TBL] [Abstract][Full Text] [Related]
18. Metabolic rates in normal and infarcted myocardium. Hansen CA; Fellenius E; Neely JR Can J Cardiol; 1986 Jul; Suppl A():1A-8A. PubMed ID: 3093034 [TBL] [Abstract][Full Text] [Related]
19. C-11 palmitate for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography. III. In vivo demonstration of the effects of substrate availability on myocardial metabolism. Schelbert HR; Henze E; Schon HR; Keen R; Hansen H; Selin C; Huang SC; Barrio JR; Phelps ME Am Heart J; 1983 Mar; 105(3):492-504. PubMed ID: 6600872 [No Abstract] [Full Text] [Related]
20. Fatty acid oxidation by isolated perfused working hearts of aged rats. Abu-Erreish GM; Neely JR; Whitmer JT; Whitman V; Sanadi DR Am J Physiol; 1977 Mar; 232(3):E258-62. PubMed ID: 842660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]