These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 4051482)

  • 1. Fungal metabolism of tert-butylphenyl diphenyl phosphate.
    Heitkamp MA; Freeman JP; McMillan DC; Cerniglia CE
    Appl Environ Microbiol; 1985 Aug; 50(2):265-73. PubMed ID: 4051482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of tert-butylphenyl diphenyl phosphate.
    Heitkamp MA; Freeman JP; Cerniglia CE
    Appl Environ Microbiol; 1986 Feb; 51(2):316-22. PubMed ID: 3082280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exposure to tert-Butylphenyl Diphenyl Phosphate, an Organophosphate Ester Flame Retardant and Plasticizer, Alters Hedgehog Signaling in Murine Limb Bud Cultures.
    Yan H; Hales BF
    Toxicol Sci; 2020 Dec; 178(2):251-263. PubMed ID: 32976586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of 1- and 2-methylnaphthalene by Cunninghamella elegans.
    Cerniglia CE; Lambert KJ; Miller DW; Freeman JP
    Appl Environ Microbiol; 1984 Jan; 47(1):111-8. PubMed ID: 6696408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fungal metabolism of acenaphthene by Cunninghamella elegans.
    Pothuluri JV; Freeman JP; Evans FE; Cerniglia CE
    Appl Environ Microbiol; 1992 Nov; 58(11):3654-9. PubMed ID: 1482186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fungal oxidation of 3-methylcholanthrene: formation of proximate carcinogenic metabolites of 3-methylcholanthrene.
    Cerniglia CE; Dodge RH; Gibson DT
    Chem Biol Interact; 1982 Jan; 38(2):161-73. PubMed ID: 7055849
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Phillips AL; Herkert NJ; Ulrich JC; Hartman JH; Ruis MT; Cooper EM; Ferguson PL; Stapleton HM
    Chem Res Toxicol; 2020 Jun; 33(6):1428-1441. PubMed ID: 32129605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and identification of metabolites of 2-ethylhexyl diphenyl phosphate in rats.
    Nishimaki-Mogami T; Minegishi K; Tanaka A; Sato M
    Arch Toxicol; 1988; 61(4):259-64. PubMed ID: 3377680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal metabolism of 2-nitrofluorene.
    Pothuluri JV; Evans FE; Heinze TM; Fu PP; Cerniglia CE
    J Toxicol Environ Health; 1996 Apr; 47(6):587-99. PubMed ID: 8614025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal metabolism of 3-nitrofluoranthene.
    Pothuluri JV; Evans FE; Heinze TM; Cerniglia CE
    J Toxicol Environ Health; 1994 Jun; 42(2):209-18. PubMed ID: 8207756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fungal metabolism and detoxification of the nitropolycyclic aromatic hydrocarbon 1-nitropyrene.
    Cerniglia CE; Freeman JP; White GL; Heflich RH; Miller DW
    Appl Environ Microbiol; 1985 Sep; 50(3):649-55. PubMed ID: 3907498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a novel metabolite in phenanthrene metabolism by the fungus Cunninghamella elegans.
    Cerniglia CE; Campbell WL; Freeman JP; Evans FE
    Appl Environ Microbiol; 1989 Sep; 55(9):2275-9. PubMed ID: 2802607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental and Hepatic Gene Expression Changes in Chicken Embryos Exposed to p-Tert-Butylphenyl Diphenyl Phosphate and Isopropylphenyl Phosphate via Egg Injection.
    Nguyen PTT; Pagé-Larivière F; Williams K; O'Brien J; Crump D
    Environ Toxicol Chem; 2022 Mar; 41(3):739-747. PubMed ID: 34913512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotransformation of fluorene by the fungus Cunninghamella elegans.
    Pothuluri JV; Freeman JP; Evans FE; Cerniglia CE
    Appl Environ Microbiol; 1993 Jun; 59(6):1977-80. PubMed ID: 8328814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regio- and stereo-selective metabolism of 4-methylbenz[a]anthracene by the fungus Cunninghamella elegans.
    Cerniglia CE; Fu PP; Yang SK
    Biochem J; 1983 Nov; 216(2):377-84. PubMed ID: 6661203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of 7,12-dimethylbenz[a]anthracene by Cunninghamella elegans.
    Wong LK; Dru J; Lin LS; Knapp J
    Appl Environ Microbiol; 1983 Nov; 46(5):1239-42. PubMed ID: 6418073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance.
    Alzualde A; Behl M; Sipes NS; Hsieh JH; Alday A; Tice RR; Paules RS; Muriana A; Quevedo C
    Neurotoxicol Teratol; 2018; 70():40-50. PubMed ID: 30312655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial transformation of the antihistamine pyrilamine maleate. Formation of potential mammalian metabolites.
    Hansen EB; Cerniglia CE; Korfmacher WA; Miller DW; Heflich RH
    Drug Metab Dispos; 1987; 15(1):97-106. PubMed ID: 2881765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of fluorophenyl pyridine carboxylic acids by the model fungus Cunninghamella elegans.
    Palmer-Brown W; Dunne B; Ortin Y; Fox MA; Sandford G; Murphy CD
    Xenobiotica; 2017 Sep; 47(9):763-770. PubMed ID: 27541932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial metabolism of pyrene.
    Cerniglia CE; Kelly DW; Freeman JP; Miller DW
    Chem Biol Interact; 1986 Feb; 57(2):203-16. PubMed ID: 3955791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.