BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 4052051)

  • 1. The acylation of sn-glycerol 3-phosphate and the metabolism of phosphatidate in microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius L.) seed.
    Griffiths G; Stobart AK; Stymne S
    Biochem J; 1985 Sep; 230(2):379-88. PubMed ID: 4052051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interconversion of diacylglycerol and phosphatidylcholine during triacylglycerol production in microsomal preparations of developing cotyledons of safflower (Carthamus tinctorius L.).
    Stobart AK; Stymne S
    Biochem J; 1985 Nov; 232(1):217-21. PubMed ID: 4084230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delta 6- and delta 12-desaturase activities and phosphatidic acid formation in microsomal preparations from the developing cotyledons of common borage (Borago officinalis).
    Griffiths G; Stobart AK; Stymne S
    Biochem J; 1988 Jun; 252(3):641-7. PubMed ID: 3421914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biosynthesis of triacylglycerols in microsomal preparations of developing cotyledons of sunflower (Helianthus annuus L.).
    Stymne S; Stobart AK
    Biochem J; 1984 Jun; 220(2):481-8. PubMed ID: 6743281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1-Acyl-sn-glycerol-3-phosphate acyltransferase in maturing safflower seeds and its contribution to the non-random fatty acid distribution of triacylglycerol.
    Ichihara K; Asahi T; Fujii S
    Eur J Biochem; 1987 Sep; 167(2):339-47. PubMed ID: 3622518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for the reversibility of the acyl-CoA:lysophosphatidylcholine acyltransferase in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons and rat liver.
    Stymne S; Stobart AK
    Biochem J; 1984 Oct; 223(2):305-14. PubMed ID: 6497849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolata.
    Bafor M; Jonsson L; Stobart AK; Stymne S
    Biochem J; 1990 Nov; 272(1):31-8. PubMed ID: 2264835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the acyl-CoA pool in the synthesis of polyunsaturated 18-carbon fatty acids and triacylglycerol production in the microsomes of developing safflower seeds.
    Stymne S; Stobart AK; Glad G
    Biochim Biophys Acta; 1983 Jul; 752(2):198-208. PubMed ID: 6860695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm.
    Bafor M; Smith MA; Jonsson L; Stobart K; Stymne S
    Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):507-14. PubMed ID: 1747126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycerol 3-phosphate acylation in microsomes of type II cells isolated from adult rat lung.
    Batenburg JJ; den Breejen JN; Yost RW; Haagsman HP; van Golde LM
    Biochim Biophys Acta; 1986 Oct; 878(3):301-9. PubMed ID: 3756197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of gamma-linolenic acid in cotyledons and microsomal preparations of the developing seeds of common borage (Borago officinalis).
    Stymne S; Stobart AK
    Biochem J; 1986 Dec; 240(2):385-93. PubMed ID: 3028375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does triacylglycerol biosynthesis require diacylglycerol acyltransferase (DAGAT)?
    Fraser T; Waters A; Chatrattanakunchai S; Stobart K
    Biochem Soc Trans; 2000 Dec; 28(6):698-700. PubMed ID: 11171175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The regulation of the fatty-acid composition of the triacylglycerols in microsomal preparations from avocado mesocarp and the developing cotyledons of safflower.
    Stobart AK; Stymne S
    Planta; 1985 Jan; 163(1):119-25. PubMed ID: 24249276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The utilisation of fatty-acid substrates in triacylglycerol biosynthesis by tissue-slices of developing safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) cotyledons.
    Griffiths G; Stymne S; Stobart AK
    Planta; 1988 Mar; 173(3):309-16. PubMed ID: 24226537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oil biosynthesis in microsomal membrane preparations from Mortierella alpina.
    Chatrattanakunchai S; Fraser T; Stobart K
    Biochem Soc Trans; 2000 Dec; 28(6):707-9. PubMed ID: 11171179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular species of phosphatidic acid, diacylglycerol and phosphatidylcholine synthesized from sn-glycerol 3-phosphate in rat lung microsomes.
    Rüstow B; Kunze D; Rabe H; Reichmann G
    Biochim Biophys Acta; 1985 Jul; 835(3):465-76. PubMed ID: 2990561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulation of triacylglycerol biosynthesis in cocoa (Theobroma cacao) L.
    Griffiths G; Harwood JL
    Planta; 1991 May; 184(2):279-84. PubMed ID: 24194081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the acylation of sn-glycerol 3-phosphate and membrane-bound lipid in the microsomal fraction from rabbit brain throughout maturation.
    Carey EM
    Biochim Biophys Acta; 1975 Aug; 398(2):231-43. PubMed ID: 1182136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of mitochondrial and microsonal monoacyl- and diacylglycerol 3-phosphate biosynthesis in rabbit heart.
    Liu MS; Kako KJ
    Biochem J; 1974 Jan; 138(1):11-21. PubMed ID: 4840836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos.
    Bates PD; Durrett TP; Ohlrogge JB; Pollard M
    Plant Physiol; 2009 May; 150(1):55-72. PubMed ID: 19329563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.