These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 4052115)

  • 1. Formation and disposition of nitrosochloramphenicol in rat liver.
    Ascherl M; Eyer P; Kampffmeyer H
    Biochem Pharmacol; 1985 Oct; 34(20):3755-63. PubMed ID: 4052115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic reduction of chloramphenicol and nitrosochloramphenicol by rat liver microsomal preparations.
    Lim LO; Yunis AA
    Pharmacology; 1983; 27(1):58-64. PubMed ID: 6611649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactions of nitrosochloramphenicol in blood.
    Eyer P; Lierheimer E; Schneller M
    Biochem Pharmacol; 1984 Jul; 33(14):2299-308. PubMed ID: 6466352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductive dechlorination of chloramphenicol by rat liver microsomes.
    Morris PL; Burke TR; Phol LR
    Drug Metab Dispos; 1983; 11(2):126-30. PubMed ID: 6133716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The reactivity of chloramphenicol reduction products with DNA bases.
    Tocher JH; Edwards DI; Thomas A
    Int J Radiat Oncol Biol Phys; 1994 May; 29(2):307-10. PubMed ID: 8195024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new pathway for the oxidative metabolism of chloramphenicol by rat liver microsomes.
    Morris PL; Burke TR; George JW; Pohl LR
    Drug Metab Dispos; 1982; 10(5):439-45. PubMed ID: 6128189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloramphenicol oxamylethanolamine as an end product of chloramphenicol metabolism in rat and humans: evidence for the formation of a phospholipid adduct.
    Cravedi JP; Perdu-Durand E; Baradat M; Alary J; Debrauwer L; Bories G
    Chem Res Toxicol; 1995; 8(5):642-8. PubMed ID: 7548746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the biotransformation of 1,3-butadiene and its metabolite, butadiene monoepoxide, by hepatic and pulmonary tissues from humans, rats and mice.
    Csanády GA; Guengerich FP; Bond JA
    Carcinogenesis; 1992 Jul; 13(7):1143-53. PubMed ID: 1638680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of glutathione excretion, bile flow, and alterations of the glutathione status by 4-nitrosophenetol during perfusion of rat livers.
    Eyer P; Kampffmeyer H
    Chem Biol Interact; 1982 Nov; 42(2):209-23. PubMed ID: 7151229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of glutathione adducts of carbon tetrachloride metabolites in a rat liver microsomal incubation system.
    Reiter R; Burk RF
    Biochem Pharmacol; 1988 Jan; 37(2):327-31. PubMed ID: 3342089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the mechanism of the metabolic activation of chloramphenicol by rat liver microsomes. Identification of a new metabolite.
    Pohl LR; Nelson SD; Krishna G
    Biochem Pharmacol; 1978 Feb; 27(4):491-6. PubMed ID: 343786
    [No Abstract]   [Full Text] [Related]  

  • 12. Biotransformation of nitrosobenzene, phenylhydroxylamine, and aniline in the isolated perfused rat liver.
    Eyer P; Kampffmeyer H; Maister H; Rösch-Oehme E
    Xenobiotica; 1980; 10(7-8):499-516. PubMed ID: 6893777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance liquid chromatographic determination of chloramphenicol and four analogues using reductive and oxidative electrochemical and ultraviolet detection.
    Abou-Khalil S; Abou-Khalil WH; Masoud AN; Yunis AA
    J Chromatogr; 1987 Jun; 417(1):111-9. PubMed ID: 3624389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of glutathione conjugates by reactive metabolites of vinylidene chloride in microsomes and isolated hepatocytes.
    Liebler DC; Meredith MJ; Guengerich FP
    Cancer Res; 1985 Jan; 45(1):186-93. PubMed ID: 3965130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the mechanism of metabolic activation of chloramphenicol by rat liver microsomes.
    Pohl LR; Krishna G
    Biochem Pharmacol; 1978 Feb; 27(3):335-41. PubMed ID: 619915
    [No Abstract]   [Full Text] [Related]  

  • 16. Oxidation of 1,2-epoxy-3-butene to 1,2:3,4-diepoxybutane by cDNA-expressed human cytochromes P450 2E1 and 3A4 and human, mouse and rat liver microsomes.
    Seaton MJ; Follansbee MH; Bond JA
    Carcinogenesis; 1995 Oct; 16(10):2287-93. PubMed ID: 7586124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Further studies of the suicide inactivation of purified rat liver cytochrome P-450 by chloramphenicol.
    Halpert J
    Mol Pharmacol; 1982 Jan; 21(1):166-72. PubMed ID: 7132955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship of oxygen and glutathione in protection against carbon tetrachloride-induced hepatic microsomal lipid peroxidation and covalent binding in the rat. Rationale for the use of hyperbaric oxygen to treat carbon tetrachloride ingestion.
    Burk RF; Lane JM; Patel K
    J Clin Invest; 1984 Dec; 74(6):1996-2001. PubMed ID: 6511912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatic N-oxidation, acetyl-transfer and DNA-binding of the acetylated metabolites of the carcinogen, benzidine.
    Frederick CB; Weis CC; Flammang TJ; Martin CN; Kadlubar FF
    Carcinogenesis; 1985 Jul; 6(7):959-65. PubMed ID: 4017176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactivation of phencyclidine in rat and human liver microsomes and recombinant P450 2B enzymes: evidence for the formation of a novel quinone methide intermediate.
    Driscoll JP; Kornecki K; Wolkowski JP; Chupak L; Kalgutkar AS; O'Donnell JP
    Chem Res Toxicol; 2007 Oct; 20(10):1488-97. PubMed ID: 17892269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.