BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 4052394)

  • 1. Transport of alpha- and beta-D-glucose by the intact human red cell.
    Carruthers A; Melchior DL
    Biochemistry; 1985 Jul; 24(15):4244-50. PubMed ID: 4052394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infinite-cis kinetics support the carrier model for erythrocyte glucose transport.
    Wheeler TJ; Whelan JD
    Biochemistry; 1988 Mar; 27(5):1441-50. PubMed ID: 3365399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric or symmetric? Cytosolic modulation of human erythrocyte hexose transfer.
    Carruthers A; Melchior DL
    Biochim Biophys Acta; 1983 Feb; 728(2):254-66. PubMed ID: 6681982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomeric dependence of fluorodeoxyglucose transport in human erythrocytes.
    O'Connell TM; Gabel SA; London RE
    Biochemistry; 1994 Sep; 33(36):10985-92. PubMed ID: 8086416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for non-uniform distribution of D-glucose within human red cells during net exit and counterflow.
    Naftalin RJ; Smith PM; Roselaar SE
    Biochim Biophys Acta; 1985 Nov; 820(2):235-49. PubMed ID: 4052420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initial steps of alpha- and beta-D-glucose binding to intact red cell membrane.
    Janoshazi A; Solomon AK
    J Membr Biol; 1993 Mar; 132(2):167-78. PubMed ID: 8496948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomeric preference of glucose phosphorylation and glycolysis in human erythrocytes.
    Fujii H; Miwa I; Okuda J
    Biochem Int; 1986 Aug; 13(2):359-65. PubMed ID: 3768015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose transport in human erythrocytes measured using 13C NMR spin transfer.
    Kuchel PW; Chapman BE; Potts JR
    FEBS Lett; 1987 Jul; 219(1):5-10. PubMed ID: 3595881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Galactose mutarotase: pH dependence of enzymatic mutarotation.
    Beebe JA; Arabshahi A; Clifton JG; Ringe D; Petsko GA; Frey PA
    Biochemistry; 2003 Apr; 42(15):4414-20. PubMed ID: 12693937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of glucose transport in human erythrocytes.
    Brahm J
    J Physiol; 1983 Jun; 339():339-54. PubMed ID: 6887027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of two independent modes of action of ATP on human erythrocyte sugar transport.
    Helgerson AL; Hebert DN; Naderi S; Carruthers A
    Biochemistry; 1989 Jul; 28(15):6410-7. PubMed ID: 2506926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for negative cooperativity in human erythrocyte sugar transport.
    Holman GD; Busza AL; Pierce EJ; Rees WD
    Biochim Biophys Acta; 1981 Dec; 649(3):503-14. PubMed ID: 7317414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of triiodothyronine transport and accumulation in rat erythrocytes.
    Osty J; Jego L; Francon J; Blondeau JP
    Endocrinology; 1988 Nov; 123(5):2303-11. PubMed ID: 3168926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kinetics of glucose transport in human red blood cells.
    Lowe AG; Walmsley AR
    Biochim Biophys Acta; 1986 May; 857(2):146-54. PubMed ID: 3707948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of insulin receptor down-regulation on hexose transport in human erythrocytes.
    Dustin ML; Jacobson GR; Peterson SW
    J Biol Chem; 1984 Nov; 259(22):13660-3. PubMed ID: 6389533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes.
    Cloherty EK; Sultzman LA; Zottola RJ; Carruthers A
    Biochemistry; 1995 Nov; 34(47):15395-406. PubMed ID: 7492539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The reduction of CrVI to CrIII by the alpha and beta anomers of D-glucose in dimethyl sulfoxide. A comparative kinetic and mechanistic study.
    Signorella S; Lafarga R; Daier V; Sala LF
    Carbohydr Res; 2000 Feb; 324(2):127-35. PubMed ID: 10702879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of glucose mutarotation assessed by an equal-amplitude paired polarized heterodyne polarimeter.
    Lin CE; Yu CJ; Chen CL; Chou LD; Chou C
    J Phys Chem A; 2010 Feb; 114(4):1665-9. PubMed ID: 20058902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous asymmetric kinetics of human red cell hexose transfer: role of cytosolic adenosine 5'-triphosphate.
    Carruthers A
    Biochemistry; 1986 Jun; 25(12):3592-602. PubMed ID: 3718945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.