BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 4052575)

  • 21. MmcBC in Pelotomaculum thermopropionicum represents a novel group of prokaryotic fumarases.
    Shimoyama T; Rajashekhara E; Ohmori D; Kosaka T; Watanabe K
    FEMS Microbiol Lett; 2007 May; 270(2):207-13. PubMed ID: 17319878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Fumarase in chickens. VIII. Kinetics of enzyme activity in high concentrations of L-malate].
    Reyns C
    Arch Int Physiol Biochim; 1975 Dec; 83(5):991-2. PubMed ID: 58641
    [No Abstract]   [Full Text] [Related]  

  • 23. Integrated steady state rate equations and the determination of individual rate constants.
    Darvey IG; Shrager R; Kohn LD
    J Biol Chem; 1975 Jun; 250(12):4696-701. PubMed ID: 1141225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification and characterization of fumarase from the syntrophic propionate-oxidizing bacterium strain MPOB.
    Van Kuijk BL; Van Loo ND; Arendsen AF; Hagen WR; Stams AJ
    Arch Microbiol; 1996 Feb; 165(2):126-31. PubMed ID: 8593099
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochemical thermodynamics and rapid-equilibrium enzyme kinetics.
    Alberty RA
    J Phys Chem B; 2010 Dec; 114(51):17003-12. PubMed ID: 21090637
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of fumaric acid from L-malic acid by solvent engineering using a recombinant thermostable fumarase from Thermus thermophilus HB8.
    Liu Y; Song J; Tan T; Liu L
    Appl Biochem Biotechnol; 2015 Mar; 175(6):2823-31. PubMed ID: 25561060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics of enzymes with iso-mechanisms: dead-end inhibition of fumarase and carbonic anhydrase II.
    Rebholz KL; Northrop DB
    Arch Biochem Biophys; 1994 Jul; 312(1):227-33. PubMed ID: 8031132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors.
    Gallagher FA; Kettunen MI; Hu DE; Jensen PR; Zandt RI; Karlsson M; Gisselsson A; Nelson SK; Witney TH; Bohndiek SE; Hansson G; Peitersen T; Lerche MH; Brindle KM
    Proc Natl Acad Sci U S A; 2009 Nov; 106(47):19801-6. PubMed ID: 19903889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamics of the disproportionation of adenosine 5'-diphosphate to adenosine 5'-triphosphate and adenosine 5'-monophosphate, II. Experimental data.
    Tewari YB; Goldberg RN; Advani JV
    Biophys Chem; 1991 Jul; 40(3):263-76. PubMed ID: 17014782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sub-minute kinetics of human red cell fumarase:
    Shishmarev D; Wright AJ; Rodrigues TB; Pileio G; Stevanato G; Brindle KM; Kuchel PW
    NMR Biomed; 2018 Mar; 31(3):. PubMed ID: 29315908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fumarate permeation in rat liver mitochondria: fumarate/malate and fumarate/phosphate translocators.
    Atlante A; Passarella S; Giannattasio S; Quagliariello E
    Biochem Biophys Res Commun; 1985 Oct; 132(1):8-18. PubMed ID: 4062935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isothermal titration microcalorimetric studies for the binding of octenoyl-CoA to medium chain acyl-CoA dehydrogenase.
    Srivastava DK; Wang S; Peterson KL
    Biochemistry; 1997 May; 36(21):6359-66. PubMed ID: 9174351
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stereochemical studies on the hydration of monofluorofumarate and 2,3-difluorofumarate by fumarase.
    Marletta MA; Cheung YF; Walsh C
    Biochemistry; 1982 May; 21(11):2637-44. PubMed ID: 7093213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamic properties of weak acids involved in enzyme-catalyzed reactions.
    Alberty RA
    J Phys Chem B; 2006 Mar; 110(10):5012-6. PubMed ID: 16526744
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamic properties of nucleotide reductase reactions.
    Alberty RA
    Biochemistry; 2004 Aug; 43(30):9840-5. PubMed ID: 15274638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamics of the maleate and citraconate hydration reactions catalysed by malease from Pseudomonas pseudoalcaligenes.
    van der Werf MJ; van den Tweel WJ; Hartmans S
    Eur J Biochem; 1993 Nov; 217(3):1011-7. PubMed ID: 8223624
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermodynamics of the conversion of aqueous xylose to xylulose.
    Tewari YB; Steckler DK; Goldberg RN
    Biophys Chem; 1985 Aug; 22(3):181-5. PubMed ID: 17007786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane enzymes associated with the dissimilation of some citric acid cycle substrates and production of extracellular oxidation products in chemostat cultures of Pseudomonas fluorescens.
    Lee WS; Cooper JK; Lynch WH
    Can J Microbiol; 1984 Mar; 30(3):396-405. PubMed ID: 6426768
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The complex allosteric and redox regulation of the fumarate hydratase and malate dehydratase reactions of Arabidopsis thaliana Fumarase 1 and 2 gives clues for understanding the massive accumulation of fumarate.
    Zubimendi JP; Martinatto A; Valacco MP; Moreno S; Andreo CS; Drincovich MF; Tronconi MA
    FEBS J; 2018 Jun; 285(12):2205-2224. PubMed ID: 29688630
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of talampicillin decomposition in solutions.
    Pawełczyk E; Płotkowiak Z; Helska M
    Acta Pol Pharm; 2002; 59(1):25-9. PubMed ID: 12026108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.