These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Rat optic nerve: freeze-fracture studies during development of myelinated axons. Black JA; Foster RE; Waxman SG Brain Res; 1982 Oct; 250(1):1-20. PubMed ID: 7139310 [TBL] [Abstract][Full Text] [Related]
10. Ultrastructural study of the cytoskeleton of optic nerve axons in guinea pigs as revealed by a quick-freezing, deep-etching method. Ou B; Ohno S; Terada N; Fujii Y; Chen HB; Yamabayashi S; Tsukahara S Ophthalmic Res; 1996; 28(1):29-35. PubMed ID: 8726674 [TBL] [Abstract][Full Text] [Related]
11. Interlamellar tight junctions of central myelin. I. Developmental mechanisms during myelogenesis. Dermietzel R; Kroczek H Cell Tissue Res; 1980; 213(1):81-94. PubMed ID: 7459997 [TBL] [Abstract][Full Text] [Related]
12. Ultrastructural study of axonal cytoskeletons in the optic nerve damaged by acutely elevated intraocular pressure using the quick-freezing and deep-etching technique. Ou B; Ohno S; Terada N; Fujii Y; Ueda H; Chen HB; Tsukahara S Ophthalmic Res; 1997; 29(1):48-54. PubMed ID: 9112267 [TBL] [Abstract][Full Text] [Related]
13. Molecular structure of the axolemma of developing axons following altered gliogenesis in rat optic nerve. Black JA; Waxman SG Dev Biol; 1986 Jun; 115(2):301-12. PubMed ID: 2423398 [TBL] [Abstract][Full Text] [Related]
14. Zonulae occludentes of the myelin lamellae in the nerve fibre layer of the retina and in the optic nerve of the rabbit: a demonstration by the freeze-fracture method. Reale E; Luciano L; Spitznas M J Neurocytol; 1975 Apr; 4(2):131-40. PubMed ID: 1123652 [TBL] [Abstract][Full Text] [Related]
15. Freeze-fracture characterization of isolated myelin and axolemma membrane fractions. Cullen MJ; de Vries GH; Webster HD Brain Res; 1981 Dec; 229(2):311-22. PubMed ID: 7306816 [TBL] [Abstract][Full Text] [Related]
16. A freeze-etch study of the central myelin. Surchev L; Ichev K; Dolapchieva S Rom J Morphol Embryol; 1992; 38(3-4):77-80. PubMed ID: 1342203 [TBL] [Abstract][Full Text] [Related]
17. Axonal cytoskeletal changes after non-disruptive axonal injury. Jafari SS; Maxwell WL; Neilson M; Graham DI J Neurocytol; 1997 Apr; 26(4):207-21. PubMed ID: 9192287 [TBL] [Abstract][Full Text] [Related]
18. Origin of beading constrictions at the axolemma: presence in unmyelinated axons and after beta,beta'-iminodipropionitrile degradation of the cytoskeleton. Ochs S; Pourmand R; Jersild RA Neuroscience; 1996 Feb; 70(4):1081-96. PubMed ID: 8848169 [TBL] [Abstract][Full Text] [Related]
19. A useful programme in BASIC for axonal morphometry with introduction of new cytoskeletal parameters. Fernández E; Cuenca N; De Juan J J Neurosci Methods; 1991 Oct; 39(3):271-89. PubMed ID: 1787747 [TBL] [Abstract][Full Text] [Related]
20. Filipin-cholesterol binding in CNS axons prior to myelination: evidence for microheterogeneity in premyelinated axolemma. Fields RD; Black JA; Waxman SG Brain Res; 1987 Feb; 404(1-2):21-32. PubMed ID: 3567567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]