These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 4053327)

  • 1. Phosphorus nuclear magnetic resonance spectroscopy in vivo.
    Chance B; Clark BJ; Nioka S; Subramanian H; Maris JM; Argov Z; Bode H
    Circulation; 1985 Nov; 72(5 Pt 2):IV103-10. PubMed ID: 4053327
    [No Abstract]   [Full Text] [Related]  

  • 2. Biomedical nuclear magnetic resonance: principles and progress.
    Evanochko WT; Reeves RC; Pohost GM
    Cardiovasc Clin; 1986; 17(1):129-43. PubMed ID: 3021330
    [No Abstract]   [Full Text] [Related]  

  • 3. The current status of magnetic resonance spectroscopy--basic and clinical aspects.
    Chan L
    West J Med; 1985 Dec; 143(6):773-81. PubMed ID: 3911590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear magnetic resonance (NMR) in clinical diagnosis.
    Brady TJ; Koutcher JA
    Adv Intern Med; 1986; 31():419-46. PubMed ID: 3511626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How might nuclear magnetic resonance be used in the in vivo monitoring of energy metabolism and substrate flow?
    Chance B
    J Trauma; 1984 Sep; 24(9 Suppl):S154-66. PubMed ID: 6481847
    [No Abstract]   [Full Text] [Related]  

  • 6. Localization methods for nuclear magnetic resonance spectroscopy in vivo.
    Wehrli FW
    Circulation; 1985 Nov; 72(5 Pt 2):IV97-102. PubMed ID: 4053331
    [No Abstract]   [Full Text] [Related]  

  • 7. [In vivo P-31 NMR spectroscopy study of muscle metabolism in disease and under the influence of drugs].
    Jehenson P; Duboc D; Fardeau M; Syrota A
    Therapie; 1987 Sep; 42(5):467-70. PubMed ID: 2894723
    [No Abstract]   [Full Text] [Related]  

  • 8. In vivo study of tissue oxygen metabolism using optical and nuclear magnetic resonance spectroscopies.
    Tamura M; Hazeki O; Nioka S; Chance B
    Annu Rev Physiol; 1989; 51():813-34. PubMed ID: 2653207
    [No Abstract]   [Full Text] [Related]  

  • 9. [Nuclear magnetic resonance spectroscopy in medicine].
    Frahm J; Haase A; Matthaei D
    Dtsch Med Wochenschr; 1983 Sep; 108(39):1486-90. PubMed ID: 6604622
    [No Abstract]   [Full Text] [Related]  

  • 10. Phosphorus nuclear magnetic resonance: a non-invasive technique for the study of muscle bioenergetics during exercise.
    Sapega AA; Sokolow DP; Graham TJ; Chance B
    Med Sci Sports Exerc; 1993 Jun; 25(6):656-66. PubMed ID: 8321101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inorganic phosphate is transported into mitochondria in the absence of ATP biosynthesis: an in vivo 31P NMR study in the human skeletal muscle.
    Iotti S; Lodi R; Gottardi G; Zaniol P; Barbiroli B
    Biochem Biophys Res Commun; 1996 Aug; 225(1):191-4. PubMed ID: 8769116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Energy metabolism and work capacity of skeletal muscles in patients with chronic heart disease: a study using 31P-magnetic resonance spectroscopy].
    Yamada Y
    Hokkaido Igaku Zasshi; 1993 Sep; 68(5):736-43. PubMed ID: 8225179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance imaging: the basic physical and clinical concepts. Part III.
    Nelson TR; Ritenour ER; Davis K; Pretorius DH; Hendrick RE
    Radiol Technol; 1985; 57(2):142-50. PubMed ID: 4070613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Failure of brain and skeletal muscle energy metabolism in multiple system atrophy shown by in vivo phosphorous MR spectroscopy.
    Martinelli P; Giuliani S; Lodi R; Iotti S; Zaniol P; Barbiroli B
    Adv Neurol; 1996; 69():271-7. PubMed ID: 8615139
    [No Abstract]   [Full Text] [Related]  

  • 15. [Effect of adaptation to intensive muscular activity on the functional state of skeletal muscle mitochondria].
    Iakovlev NN; Krasnova AF; Lenkova RI; Leshkevich LG; Samodanova GI
    Tsitologiia; 1972 Feb; 14(2):197-204. PubMed ID: 4334892
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of crossclamping the descending aorta on the high-energy phosphates of myocardium and skeletal muscle. A phosphorus 31-nuclear magnetic resonance study.
    Balschi JA; Henderson T; Bradley EL; Gelman S
    J Thorac Cardiovasc Surg; 1993 Aug; 106(2):346-56. PubMed ID: 8341075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concurrent 31P nuclear magnetic resonance spectroscopy and fiber-optic oxygen consumption measurements in perfused rat hearts.
    Zhao P; Zhao Y; Sherry AD; Pantano P
    Methods Enzymol; 2004; 381():735-46. PubMed ID: 15063709
    [No Abstract]   [Full Text] [Related]  

  • 18. [Magnetic resonance imaging of the cardiovascular system].
    Nishimura T
    Kokyu To Junkan; 1986 Jun; 34(6):607-14. PubMed ID: 3532249
    [No Abstract]   [Full Text] [Related]  

  • 19. Nuclear magnetic resonance imaging of the heart.
    Steiner RE
    Cardiovasc Intervent Radiol; 1986; 8(5-6):314-20. PubMed ID: 3084096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for mitochondrial dysfunction in patients with alternating hemiplegia of childhood.
    Arnold DL; Silver K; Andermann F
    Ann Neurol; 1993 Jun; 33(6):604-7. PubMed ID: 8498840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.