These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 405370)

  • 21. The mechanism of wall synthesis in bacteria. The organization of enzymes and isoprenoid phosphates in the membrane.
    Anderson RG; Hussey H; Baddiley J
    Biochem J; 1972 Mar; 127(1):11-25. PubMed ID: 4627447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Attachment of the main chain to the linkage unit in biosynthesis of teichoic acids.
    McArthur HA; Hancock IC; Baddiley J
    J Bacteriol; 1981 Mar; 145(3):1222-31. PubMed ID: 6782090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peptidoglycan synthesis in L-phase variants of Bacillus licheniformis and Bacillus subtilis.
    Ward JB
    J Bacteriol; 1975 Nov; 124(2):668-78. PubMed ID: 241742
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tunicamycin inhibition of bacterial wall polymer synthesis.
    Ward JB
    FEBS Lett; 1977; 78(1):151-4. PubMed ID: 872935
    [No Abstract]   [Full Text] [Related]  

  • 25. The regulation of synthesis of wall polymers and of wall assembly in Bacillus.
    Hancock IC
    Biochem Soc Trans; 1985 Dec; 13(6):994-6. PubMed ID: 3937757
    [No Abstract]   [Full Text] [Related]  

  • 26. A metabolic checkpoint protein GlmR is important for diverting carbon into peptidoglycan biosynthesis in Bacillus subtilis.
    Patel V; Wu Q; Chandrangsu P; Helmann JD
    PLoS Genet; 2018 Sep; 14(9):e1007689. PubMed ID: 30248093
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosynthesis of the unit that links teichoic acid to the bacterial wall: inhibition by tunicamycin.
    Hancock IC; Wiseman G; Baddiley J
    FEBS Lett; 1976 Oct; 69(1):75-80. PubMed ID: 825388
    [No Abstract]   [Full Text] [Related]  

  • 28. Defect in biosynthesis of the linkage unit between peptidoglycan and teichoic acid in a bacteriophage-resistant mutant of Staphylococcus aureus.
    Bracha R; Davidson R; Mirelman D
    J Bacteriol; 1978 May; 134(2):412-7. PubMed ID: 149106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural studies on the linkage unit of ribitol teichoic acid of Lactobacillus plantarum.
    Kojima N; Araki Y; Ito E
    Eur J Biochem; 1985 Apr; 148(1):29-34. PubMed ID: 3979395
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Late-stage polyribitol phosphate wall teichoic acid biosynthesis in Staphylococcus aureus.
    Meredith TC; Swoboda JG; Walker S
    J Bacteriol; 2008 Apr; 190(8):3046-56. PubMed ID: 18281399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Uridine diphosphate N-acetylglucosamine orchestrates the interaction of GlmR with either YvcJ or GlmS in Bacillus subtilis.
    Foulquier E; Pompeo F; Byrne D; Fierobe HP; Galinier A
    Sci Rep; 2020 Sep; 10(1):15938. PubMed ID: 32994436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Incorporation of N-acetyl-D-glucosamine from UDP-N-acetyl-D-glucosamine by isolated membranes of Bacillus subtilis. Identification of undecaprenyl poly(N-acetylglucosaminyl pyrophosphate).
    Bettinger GE; Chatterjee AN; Young FE
    J Biol Chem; 1977 Jun; 252(12):4118-24. PubMed ID: 405389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of synthesis of wall teichoic acid during balanced growth of Bacillus subtilis W23.
    Cheah SC; Hussey H; Hancock I; Baddiley J
    J Gen Microbiol; 1982 Mar; 128(3):593-9. PubMed ID: 6281365
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of ribitol and glycerol teichoic acid genes in Bacillus subtilis W23 and 168: identical function, similar divergent organization, but different regulation.
    Lazarevic V; Abellan FX; Möller SB; Karamata D; Mauël C
    Microbiology (Reading); 2002 Mar; 148(Pt 3):815-24. PubMed ID: 11882717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipid intermediates in the biosynthesis of the wall teichoic acid in Staphylococcus lactis 13.
    Hussey H; Baddiley J
    Biochem J; 1972 Mar; 127(1):39-50. PubMed ID: 5073752
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Incorporation of [2-3H]glycerol into cell surface components of Bacillus subtilis 168 and thermosensitive mutants affected in wall teichoic acid synthesis: effect of tunicamycin.
    Pooley HM; Karamata D
    Microbiology (Reading); 2000 Apr; 146 ( Pt 4)():797-805. PubMed ID: 10784037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosynthesis of linkage units for teichoic acids in gram-positive bacteria: distribution of related enzymes and their specificities for UDP-sugars and lipid-linked intermediates.
    Yokoyama K; Mizuguchi H; Araki Y; Kaya S; Ito E
    J Bacteriol; 1989 Feb; 171(2):940-6. PubMed ID: 2914877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of a Bacillus subtilis thermosensitive teichoic acid-deficient mutant: gene mnaA (yvyH) encodes the UDP-N-acetylglucosamine 2-epimerase.
    Soldo B; Lazarevic V; Pooley HM; Karamata D
    J Bacteriol; 2002 Aug; 184(15):4316-20. PubMed ID: 12107153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insertion and fate of the cell wall in Bacillus subtilis.
    Mobley HL; Koch AL; Doyle RJ; Streips UN
    J Bacteriol; 1984 Apr; 158(1):169-79. PubMed ID: 6232259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Teichoic acid is an essential polymer in Bacillus subtilis that is functionally distinct from teichuronic acid.
    Bhavsar AP; Erdman LK; Schertzer JW; Brown ED
    J Bacteriol; 2004 Dec; 186(23):7865-73. PubMed ID: 15547257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.