BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 4055)

  • 1. Blood pH and PaCO2 as chemical factors in myocardial blood flow control.
    Tarnow J; Brückner JB; Eberlein HJ; Gethmann JW; Hess W; Patschke D; Wilde J
    Basic Res Cardiol; 1975; 70(6):685-96. PubMed ID: 4055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The response of canine coronary vascular resistance to local alterations in coronary arterial P CO2.
    Case RB; Greenberg H
    Circ Res; 1976 Oct; 39(4):558-66. PubMed ID: 963840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of nitric oxide to coronary vasodilation during hypercapnic acidosis.
    Gurevicius J; Salem MR; Metwally AA; Silver JM; Crystal GJ
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H39-47. PubMed ID: 7530920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of myocardial oxygen demand on the coronary vascular response to arterial blood gas changes in humans.
    Vermeulen TD; Boulet LM; Stembridge M; Williams AM; Anholm JD; Subedi P; Gasho C; Ainslie PN; Feigl EO; Foster GE
    Am J Physiol Heart Circ Physiol; 2018 Jul; 315(1):H132-H140. PubMed ID: 29600897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of carbon dioxide upon myocardial contractile performance, blood flow and oxygen consumption.
    van den Bos GC; Drake AJ; Noble MI
    J Physiol; 1979 Feb; 287():149-61. PubMed ID: 430387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feedforward sympathetic coronary vasodilation in exercising dogs.
    Gorman MW; Tune JD; Richmond KN; Feigl EO
    J Appl Physiol (1985); 2000 Nov; 89(5):1892-902. PubMed ID: 11053341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylcholine causes coronary vasodilation in dogs and baboons.
    Van Winkle DM; Feigl EO
    Circ Res; 1989 Dec; 65(6):1580-93. PubMed ID: 2582591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of large coronary arteries by increases in myocardial metabolic demands in conscious dogs.
    Macho P; Hintze TH; Vatner SF
    Circ Res; 1981 Sep; 49(3):594-9. PubMed ID: 6114801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haemodynamic effects of adenosine-5'-carboxylic acid-amide in the anaesthetized dog during normal respiration and hypercapnic acidosis.
    Schütz W; Raberger G
    Arch Int Pharmacodyn Ther; 1976 Jan; 219(1):140-8. PubMed ID: 1267538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Systemic and coronary haemodynamic effects of dobutamine and norepinephrine during metabolic acidosis].
    Schulte-Sasse U; Hess W; Schweichel E; Tarnow J; Brückner JB
    Anaesthesist; 1981 Sep; 30(9):455-60. PubMed ID: 7283111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of myocardial oxygen tension by sympathetic coronary vasoconstriction in the dog.
    Feigl EO
    Circ Res; 1975 Jul; 37(1):88-95. PubMed ID: 238753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of propranolol pretreatment on cerebral blood flow, oxygen uptake and catecholamines during metabolic acidosis following E. coli endotoxin in dogs.
    Westerlind A; Larsson LE; Häggendal J; Ekström-Jodal B
    Acta Anaesthesiol Scand; 1995 May; 39(4):467-71. PubMed ID: 7676780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional coronary vasoconstriction after combined beta-adrenergic and calcium channel blockade in patients with coronary artery disease.
    Kern MJ; Petru MA; Ferry DR; Eilen SD; Barr WK; Porter CB; O'Rourke RA
    J Am Coll Cardiol; 1985 Jun; 5(6):1438-50. PubMed ID: 2860147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenylephrine does not limit myocardial blood flow or oxygen delivery during isoflurane-induced hypotension in dogs.
    Abdel-Latif M; Kim SJ; Salem MR; Crystal GJ
    Anesth Analg; 1992 Jun; 74(6):870-6. PubMed ID: 1595919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiation of coronary vasoconstriction by beta-adrenergic blockade in patients with coronary artery disease.
    Kern MJ; Ganz P; Horowitz JD; Gaspar J; Barry WH; Lorell BH; Grossman W; Mudge GH
    Circulation; 1983 Jun; 67(6):1178-85. PubMed ID: 6133636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beneficial effects of alpha 2-adrenoceptor activity on ischemic myocardium during coronary hypoperfusion in dogs.
    Kitakaze M; Hori M; Gotoh K; Sato H; Iwakura K; Kitabatake A; Inoue M; Kamada T
    Circ Res; 1989 Dec; 65(6):1632-45. PubMed ID: 2555078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coronary vascular responses to hypoxia in the diabetic lamb: independence from adenosine and autonomic mechanisms.
    Downing SE; Lee JC; Werner JC
    Am Heart J; 1986 Aug; 112(2):272-9. PubMed ID: 3017081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of K+ATP channels in local metabolic coronary vasodilation.
    Richmond KN; Tune JD; Gorman MW; Feigl EO
    Am J Physiol; 1999 Dec; 277(6):H2115-23. PubMed ID: 10600828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of alpha-adrenergic coronary vasoconstriction on the transmural myocardial blood flow distribution during humoral and neuronal adrenergic activation.
    Baumgart D; Ehring T; Kowallik P; Guth BD; Krajcar M; Heusch G
    Circ Res; 1993 Nov; 73(5):869-86. PubMed ID: 8403257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.