These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 4055289)

  • 1. Adenosine-stimulated production of sugar-phosphates in bovine corneal endothelium.
    Zagrod ME; Whikehart DR
    Invest Ophthalmol Vis Sci; 1985 Nov; 26(11):1475-83. PubMed ID: 4055289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Null effect of adenosine on cyclic nucleotides of the corneal endothelium: possible implications for adenosine-stimulated corneal deturgescence.
    Zagrod ME; Whikehart DR
    Curr Eye Res; 1984 Feb; 3(2):293-8. PubMed ID: 6323099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribose-5-phosphate biosynthesis in Methanocaldococcus jannaschii occurs in the absence of a pentose-phosphate pathway.
    Grochowski LL; Xu H; White RH
    J Bacteriol; 2005 Nov; 187(21):7382-9. PubMed ID: 16237021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of glutathione and adenosine on plasma membrane ATPases of the corneal endothelium. An hypothesis on the stimulatory mechanism of perfused glutathione upon deturgescence.
    Whikehart DR; Soppet DR
    Curr Eye Res; 1981; 1(8):451-5. PubMed ID: 6277570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione in rabbit corneal endothelia: the effects of selected perfusion fluids.
    Whikehart DR; Edelhauser HF
    Invest Ophthalmol Vis Sci; 1978 May; 17(5):455-64. PubMed ID: 640791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proliferation and differentiation of bovine corneal endothelial cells in culture.
    Savion N; Isaacs JD; Shuman MA; Gospodarowicz D
    Metab Pediatr Syst Ophthalmol; 1982; 6(3-4):305-20. PubMed ID: 6764247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Riboneogenesis in yeast.
    Clasquin MF; Melamud E; Singer A; Gooding JR; Xu X; Dong A; Cui H; Campagna SR; Savchenko A; Yakunin AF; Rabinowitz JD; Caudy AA
    Cell; 2011 Jun; 145(6):969-80. PubMed ID: 21663798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of sedoheptulose-7-phosphate from enzymatically obtained "active glycolic aldehyde" and ribose-5-phosphate with transketolase.
    PROCHOROFF NN; KATTERMANN R; HOLZER H
    Biochem Biophys Res Commun; 1962 Nov; 9():477-81. PubMed ID: 13986286
    [No Abstract]   [Full Text] [Related]  

  • 9. [Identification of sedoheptulose-7-phosphate in metabolic products of ribose-5-phosphate in human erythrocytes].
    MARINELLO E
    Boll Soc Ital Biol Sper; 1956 Sep; 32(9):1201-3. PubMed ID: 13412968
    [No Abstract]   [Full Text] [Related]  

  • 10. Methods for the determination of intracellular levels of ribose phosphates.
    Camici M; Tozzi MG; Ipata PL
    J Biochem Biophys Methods; 2006 Oct; 68(3):145-54. PubMed ID: 16893570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Identification of sedoheptulose-7-phosphate among the products of metabolism of ribose-5-phosphate in human erythrocytes].
    MARINELLO E
    Arch Sci Biol (Bologna); 1958; 42(4):320-33. PubMed ID: 13596133
    [No Abstract]   [Full Text] [Related]  

  • 12. Regulation of corneal endothelial barrier function by adenosine, cyclic AMP, and protein kinases.
    Riley MV; Winkler BS; Starnes CA; Peters MI; Dang L
    Invest Ophthalmol Vis Sci; 1998 Oct; 39(11):2076-84. PubMed ID: 9761286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation between ribose-3-phosphate and ribose-5-phosphate by means of the orcinol-pentose reaction.
    ALBAUM HG; UMBREIT WW
    J Biol Chem; 1947 Feb; 167(2):369-76. PubMed ID: 20285032
    [No Abstract]   [Full Text] [Related]  

  • 14. Distribution of phosphatic metabolites in the porcine cornea using phosphorus-31 nuclear magnetic resonance.
    Greiner JV; Braude LS; Glonek T
    Exp Eye Res; 1985 Mar; 40(3):335-42. PubMed ID: 4065230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine promotes regulation of corneal hydration through cyclic adenosine monophosphate.
    Riley MV; Winkler BS; Starnes CA; Peters MI
    Invest Ophthalmol Vis Sci; 1996 Jan; 37(1):1-10. PubMed ID: 8550312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of ribose-5-phosphate in hemolysates. III. Quantitative determination of sedoheptulose-7-phosphate and some properties of the transketolase of erythrocytes and blood serum.
    BRUNS FH; DUNWALD E; NOLTMANN E
    Biochem Z; 1958; 330(6):497-508. PubMed ID: 13596392
    [No Abstract]   [Full Text] [Related]  

  • 17. The significance of sedoheptulose 1,7-bisphosphate in the metabolism and regulation of the pentose pathway in liver.
    Williams JF; Blackmore PF; Arora KK
    Biochem Int; 1985 Oct; 11(4):599-610. PubMed ID: 4084320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine stimulation of fluid transport across rabbit corneal endothelium.
    Fischbarg J; Lim JJ; Bourguet J
    J Membr Biol; 1977 Jun; 35(2):95-112. PubMed ID: 886607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of vidarabine and related compounds on corneal endothelium.
    Hull DS; Bowman K; Green K
    Invest Ophthalmol Vis Sci; 1977 Jun; 16(6):545-9. PubMed ID: 863615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Phosphate inhibition of the conversion of ribose-1-phosphate--a product of purine nucleoside phosphorylase splitting in the phosphoribomutase reaction].
    Golovatskiĭ ID; Tsegel'skiĭ AA
    Ukr Biokhim Zh (1978); 1987; 59(5):45-9. PubMed ID: 2825385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.