These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 4055766)

  • 21. The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae.
    Yun CW; Bauler M; Moore RE; Klebba PE; Philpott CC
    J Biol Chem; 2001 Mar; 276(13):10218-23. PubMed ID: 11120744
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Siderophore-iron uptake in saccharomyces cerevisiae. Identification of ferrichrome and fusarinine transporters.
    Yun CW; Tiedeman JS; Moore RE; Philpott CC
    J Biol Chem; 2000 May; 275(21):16354-9. PubMed ID: 10748025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential role for extracellular glutathione-dependent ferric reductase in utilization of environmental and host ferric compounds by Histoplasma capsulatum.
    Timmerman MM; Woods JP
    Infect Immun; 2001 Dec; 69(12):7671-8. PubMed ID: 11705947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli.
    Miethke M; Hou J; Marahiel MA
    Biochemistry; 2011 Dec; 50(50):10951-64. PubMed ID: 22098718
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyanide and antimycin a resistant respiration and uptake of 6-deoxy-D-glucose in Rhodotorula glutinis.
    Janda S; Tauchová R
    Cell Mol Biol; 1982; 28(6):547-53. PubMed ID: 6892105
    [No Abstract]   [Full Text] [Related]  

  • 26. Relationship of active membrane transport and respiration in Rhodotorula glutinis: possibility of two respiratory systems.
    Janda S
    Cell Mol Biol Incl Cyto Enzymol; 1979; 25(2):131-6. PubMed ID: 575314
    [No Abstract]   [Full Text] [Related]  

  • 27. The effect of nystatin on active transport in Rhodotorula glutinis (gracilis) is restricted to the plasma membrane.
    von Hedenström M; Höfer M
    Biochim Biophys Acta; 1979 Jul; 555(1):169-74. PubMed ID: 573138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A kinetic analysis of D-xylose transport in Rhodotorula glutinis.
    Alcorn ME; Griffin CC
    Biochim Biophys Acta; 1978 Jul; 510(2):361-71. PubMed ID: 566557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics of iron acquisition from ferric siderophores by Paracoccus denitrificans.
    Bergeron RJ; Weimar WR
    J Bacteriol; 1990 May; 172(5):2650-7. PubMed ID: 2185228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of nitrogen source and pH on siderophore production by Rhodotorula strains and their application to biocontrol of phytopathogenic moulds.
    Calvente V; de Orellano ME; Sansone G; Benuzzi D; Sanz de Tosetti MI
    J Ind Microbiol Biotechnol; 2001 Apr; 26(4):226-9. PubMed ID: 11464271
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The nutritional selectivity of a siderophore-catabolizing bacterium.
    DeAngelis R; Forsyth M; Castignetti D
    Biometals; 1993; 6(4):234-8. PubMed ID: 8260793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carrier-facilitated bulk liquid membrane transport of iron(III)-siderophore complexes utilizing first coordination sphere recognition.
    Wirgau JI; Crumbliss AL
    Inorg Chem; 2003 Sep; 42(18):5762-70. PubMed ID: 12950227
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enterobactin protonation and iron release: structural characterization of the salicylate coordination shift in ferric enterobactin.
    Abergel RJ; Warner JA; Shuh DK; Raymond KN
    J Am Chem Soc; 2006 Jul; 128(27):8920-31. PubMed ID: 16819888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deuterons cannot replace protons in active transport processes in yeast.
    Kotyk A; Dvoráková M; Koryta J
    FEBS Lett; 1990 May; 264(2):203-5. PubMed ID: 2162783
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monosaccharide transport systems in the yeast Rhodotorula glutinis.
    Janda S; Kotyk A; Tauchová R
    Arch Microbiol; 1976 Dec; 111(1-2):151-4. PubMed ID: 13756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of D-glucose and 2-deoxy-D-glucose transport by Rhodotorula glutinis.
    Taghikhani M; Lavi LW; Woost PG; Griffin CC
    Biochim Biophys Acta; 1984 Apr; 803(4):278-83. PubMed ID: 6538439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport of L-glucose by Rhodotorula glutinis.
    Pinkerton MD; Ritchie CK; Griffin CC
    Biochimie; 1988 Feb; 70(2):183-5. PubMed ID: 3134941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of a 9-double bond on stereospecific microbial 4,5-reductions.
    Schubert K; Schumann G; Kaufmann G
    J Steroid Biochem; 1983 Jan; 18(1):75-80. PubMed ID: 6683343
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coordination isomers of biological iron transport compounds. III. (1) Transport of lambda-cis-chromic desferriferrichrome by Ustilago sphaerogena.
    Leong J; Neilands JB; Raymond KN
    Biochem Biophys Res Commun; 1974 Oct; 60(3):1066-71. PubMed ID: 4429561
    [No Abstract]   [Full Text] [Related]  

  • 40. Active transport of ferric schizokinen in Anabaena sp.
    Lammers PJ; Sanders-Loehr J
    J Bacteriol; 1982 Jul; 151(1):288-94. PubMed ID: 6806241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.