These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 4055892)
1. Generation of microtubule stability subclasses by microtubule-associated proteins: implications for the microtubule "dynamic instability" model. Job D; Pabion M; Margolis RL J Cell Biol; 1985 Nov; 101(5 Pt 1):1680-9. PubMed ID: 4055892 [TBL] [Abstract][Full Text] [Related]
2. Sliding of STOP proteins on microtubules: a model system for diffusion-dependent microtubule motility. Margolis RL; Job D; Pabion M; Rauch CT Ann N Y Acad Sci; 1986; 466():306-21. PubMed ID: 3460415 [TBL] [Abstract][Full Text] [Related]
3. Phase dynamics at microtubule ends: the coexistence of microtubule length changes and treadmilling. Farrell KW; Jordan MA; Miller HP; Wilson L J Cell Biol; 1987 Apr; 104(4):1035-46. PubMed ID: 3558477 [TBL] [Abstract][Full Text] [Related]
4. Characterization of rat brain crude extract microtubule assembly: correlation of cold stability with the phosphorylation state of a microtubule-associated 64K protein. Margolis RL; Rauch CT Biochemistry; 1981 Jul; 20(15):4451-8. PubMed ID: 7284335 [TBL] [Abstract][Full Text] [Related]
6. Stabilization and bundling of subtilisin-treated microtubules induced by microtubule associated proteins. Saoudi Y; Paintrand I; Multigner L; Job D J Cell Sci; 1995 Jan; 108 ( Pt 1)():357-67. PubMed ID: 7738110 [TBL] [Abstract][Full Text] [Related]
7. Separation of active tubulin and microtubule-associated proteins by ultracentrifugation and isolation of a component causing the formation of microtubule bundles. Hamel E; Lin CM Biochemistry; 1984 Aug; 23(18):4173-84. PubMed ID: 6487596 [TBL] [Abstract][Full Text] [Related]
8. The binding of MAP-2 and tau on brain microtubules in vitro: implications for microtubule structure. Kim H; Jensen CG; Rebhun LI Ann N Y Acad Sci; 1986; 466():218-39. PubMed ID: 3089106 [TBL] [Abstract][Full Text] [Related]
10. Heat-stable microtubule protein MAP-1 binds to microtubules and induces microtubule assembly. Vera JC; Rivas CI; Maccioni RB FEBS Lett; 1988 May; 232(1):159-62. PubMed ID: 3130274 [TBL] [Abstract][Full Text] [Related]
11. Microtubule-associated proteins-dependent colchicine stability of acetylated cold-labile brain microtubules from the Atlantic cod, Gadus morhua. Billger M; Strömberg E; Wallin M J Cell Biol; 1991 Apr; 113(2):331-8. PubMed ID: 2010465 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of GTP hydrolysis during the assembly of chick brain MAP2-tubulin microtubule protein. Burns RG Biochem J; 1991 Jul; 277 ( Pt 1)(Pt 1):239-43. PubMed ID: 1854336 [TBL] [Abstract][Full Text] [Related]
13. Higher plant microtubule-associated proteins: in vitro functional assays. Vantard M; Schellenbaum P; Peter C; Lambert AM Biochimie; 1993; 75(8):725-30. PubMed ID: 8286444 [TBL] [Abstract][Full Text] [Related]
14. Analysis of the microtubule-binding domain of MAP-2. Gottlieb RA; Murphy DB J Cell Biol; 1985 Nov; 101(5 Pt 1):1782-9. PubMed ID: 4055896 [TBL] [Abstract][Full Text] [Related]
15. Assembly of chick brain MAP2-tubulin microtubule protein. Characterization of the protein and the MAP2-dependent addition of tubulin dimers. Burns RG Biochem J; 1991 Jul; 277 ( Pt 1)(Pt 1):231-8. PubMed ID: 1854335 [TBL] [Abstract][Full Text] [Related]
16. Microtubule-associated proteins and the flexibility of microtubules. Kurz JC; Williams RC Biochemistry; 1995 Oct; 34(41):13374-80. PubMed ID: 7577923 [TBL] [Abstract][Full Text] [Related]
17. High concentrations of STOP protein induce a microtubule super-stable state. Job D; Rauch CT; Margolis RL Biochem Biophys Res Commun; 1987 Oct; 148(1):429-34. PubMed ID: 3675590 [TBL] [Abstract][Full Text] [Related]