These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 4055940)

  • 1. Stoichiometric displacement of solvent by non-polar solutes in reversed-phase liquid chromatography.
    Geng X; Regnier FE
    J Chromatogr; 1985 Sep; 332():147-68. PubMed ID: 4055940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study on the rule of solvent strength in reversed-phase liquid chromatography].
    Zhang WP; Guo H; Gao J; Geng XD
    Se Pu; 2000 Nov; 18(6):475-9. PubMed ID: 12541730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the fractions of the stoichiometric displacement parameter Z.
    Wang Y; Geng XD
    Se Pu; 2002 Nov; 20(6):481-5. PubMed ID: 12682992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retention model for proteins in reversed-phase liquid chromatography.
    Geng X; Regnier FE
    J Chromatogr; 1984 Jul; 296():15-30. PubMed ID: 6480740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidation of retention behaviors in reversed-phase liquid chromatography as a function of mobile phase composition.
    Tsui HW; Kuo CH; Huang YC
    J Chromatogr A; 2019 Jun; 1595():127-135. PubMed ID: 30837162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retention in reversed-phase liquid chromatography: solvatochromic investigation of homologous alcohol-water binary mobile phases.
    Michels JJ; Dorsey JG
    J Chromatogr; 1988 Dec; 457():85-98. PubMed ID: 3243892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention models and interaction mechanisms of acetone and other carbonyl-containing molecules with amylose tris[(S)-α-methylbenzylcarbamate] sorbent.
    Tsui HW; Hwang MY; Ling L; Franses EI; Wang NH
    J Chromatogr A; 2013 Mar; 1279():36-48. PubMed ID: 23374367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the retention mechanism of solutes in hydrophilic interaction chromatography using stoichiometric displacement theory I. The linear relationship of lgk' vs. lg[H
    Wang F; Yang F; Tian Y; Liu J; Shen J; Bai Q
    Talanta; 2018 Jan; 176():499-508. PubMed ID: 28917782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Thermodynamic characteristics of stoichiometric displacement linear parameter log I in reversed-phase liquid chromatography].
    Bai Q; Geng XD
    Se Pu; 2000 May; 18(3):189-93. PubMed ID: 12541552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chemical interpretation and practice of linear solvation energy relationships in chromatography.
    Vitha M; Carr PW
    J Chromatogr A; 2006 Sep; 1126(1-2):143-94. PubMed ID: 16889784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention models and interaction mechanisms of benzene and other aromatic molecules with an amylose-based sorbent.
    Hsieh HY; Wu SG; Tsui HW
    J Chromatogr A; 2017 Apr; 1494():55-64. PubMed ID: 28320536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of alcohol aggregation on the retention factors of chiral solutes with an amylose-based sorbent: modeling and implications for the adsorption mechanism.
    Tsui HW; Franses EI; Wang NH
    J Chromatogr A; 2014 Feb; 1328():52-65. PubMed ID: 24444802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polar bonded phase with the zwitterionic sulfobetaine functional group. Comparison to silica.
    Tramposch WG; Weber SG
    J Chromatogr; 1991 May; 544(1-2):113-23. PubMed ID: 1653254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the organic modifier concentration on the retention in reversed-phase liquid chromatography I. General semi-thermodynamic treatment for adsorption and partition mechanisms.
    Nikitas P; Pappa-Louisi A; Agrafiotou P
    J Chromatogr A; 2002 Feb; 946(1-2):9-32. PubMed ID: 11873986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of three temperature- and mobile phase-dependent retention models for reversed-phase liquid chromatographic retention and apparent retention enthalpy.
    Horner AR; Wilson RE; Groskreutz SR; Murray BE; Weber SG
    J Chromatogr A; 2019 Mar; 1589():73-82. PubMed ID: 30626503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Column selection for liquid chromatographic estimation of the k'w hydrophobicity parameter.
    Tate PA; Dorsey JG
    J Chromatogr A; 2004 Jul; 1042(1-2):37-48. PubMed ID: 15296386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the retention mechanism on an octadecylsiloxane-bonded silica stationary phase (HyPURITY C18) in reversed-phase liquid chromatography.
    Poole CF; Kiridena W; DeKay C; Koziol WW; Rosencrans RD
    J Chromatogr A; 2006 May; 1115(1-2):133-41. PubMed ID: 16564531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on quantitative relationship between retention parameters of solutes in reversed-phase liquid chromatography].
    Guo H; Zhang YJ; Gao J; Geng XD
    Se Pu; 2001 Jan; 19(1):1-4. PubMed ID: 12541835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of temperature on competitive adsorption of the solute and the organic solvent in reversed-phase liquid chromatography.
    Poplewska I; Piatkowski W; Antos D
    J Chromatogr A; 2006 Jan; 1103(2):284-95. PubMed ID: 16343511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of retention behaviour of steroidal pharmaceuticals in polar and bonded reversed-phase liquid column chromatography.
    Hara S; Hayashi S
    J Chromatogr; 1977 Nov; 142():689-703. PubMed ID: 914942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.