BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 4056056)

  • 1. Mechanoelectrical feedback: independent role of preload and contractility in modulation of canine ventricular excitability.
    Lerman BB; Burkhoff D; Yue DT; Franz MR; Sagawa K
    J Clin Invest; 1985 Nov; 76(5):1843-50. PubMed ID: 4056056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanoelectrical feedback: role of beta-adrenergic receptor activation in mediating load-dependent shortening of ventricular action potential and refractoriness.
    Lerman BB; Engelstein ED; Burkhoff D
    Circulation; 2001 Jul; 104(4):486-90. PubMed ID: 11468214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent effects of preload, afterload, and contractility on left ventricular torsion.
    Dong SJ; Hees PS; Huang WM; Buffer SA; Weiss JL; Shapiro EP
    Am J Physiol; 1999 Sep; 277(3):H1053-60. PubMed ID: 10484428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanoelectrical feedback effects of altering preload, afterload, and ventricular shortening.
    Hansen DE
    Am J Physiol; 1993 Feb; 264(2 Pt 2):H423-32. PubMed ID: 8447458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of contraction-excitation feedback on electrophysiology and arrhythmogenesis in rabbits with experimental left ventricular hypertrophy.
    Jauch W; Hicks MN; Cobbe SM
    Cardiovasc Res; 1994 Sep; 28(9):1390-6. PubMed ID: 7954651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The acute inotropic effects of cardiac contractility modulation (CCM) are associated with action potential duration shortening and mediated by β1-adrenoceptor signalling.
    Winter J; Brack KE; Ng GA
    J Mol Cell Cardiol; 2011 Aug; 51(2):252-62. PubMed ID: 21557948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preloading history influences pressure-volume-derived indices of myocardial contractility in the ejecting canine left ventricle.
    Krukenkamp IB; Silverman NA; Kollmorgen TA; Levitsky S
    J Thorac Cardiovasc Surg; 1989 Apr; 97(4):551-64. PubMed ID: 2927160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological effect of volume load in isolated canine hearts.
    Calkins H; Maughan WL; Kass DA; Sagawa K; Levine JH
    Am J Physiol; 1989 Jun; 256(6 Pt 2):H1697-706. PubMed ID: 2735439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional changes in ventricular excitability during load manipulation of the in situ pig heart.
    Dean JW; Lab MJ
    J Physiol; 1990 Oct; 429():387-400. PubMed ID: 2277353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sympathomimetic modulation of load-dependent changes in the action potential duration in the in situ porcine heart.
    Horner SM; Murphy CF; Coen B; Dick DJ; Lab MJ
    Cardiovasc Res; 1996 Jul; 32(1):148-57. PubMed ID: 8776412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of acute volume load on refractoriness and arrhythmia development in isolated, chronically infarcted canine hearts.
    Calkins H; Maughan WL; Weisman HF; Sugiura S; Sagawa K; Levine JH
    Circulation; 1989 Mar; 79(3):687-97. PubMed ID: 2917392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monophasic action potential recordings during acute changes in ventricular loading induced by the Valsalva manoeuvre.
    Taggart P; Sutton P; John R; Lab M; Swanton H
    Br Heart J; 1992 Mar; 67(3):221-9. PubMed ID: 1554540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monophasic action potentials at discontinuation of cardiopulmonary bypass: evidence for contraction-excitation feedback in man.
    Taggart P; Sutton PM; Treasure T; Lab M; O'Brien W; Runnalls M; Swanton RH; Emanuel RW
    Circulation; 1988 Jun; 77(6):1266-75. PubMed ID: 3370766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is action potential duration of the intact dog heart related to contractility or stimulus rate?
    Drake AJ; Noble MI; Schouten V; Seed A; Ter Keurs HE; Wohlfart B
    J Physiol; 1982 Oct; 331():499-510. PubMed ID: 7153914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of volume loading and load reduction on ventricular refractoriness and conduction properties in canine congestive heart failure.
    Zhu WX; Johnson SB; Brandt R; Burnett J; Packer DL
    J Am Coll Cardiol; 1997 Sep; 30(3):825-33. PubMed ID: 9283547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The relationships between left ventricular volumes and ejection fraction in mitral and aortic regurgitation (author's transl)].
    Strauer BE; Kramer H; Bolte H; Riecker G
    Klin Wochenschr; 1975 Oct; 53(20):795-84. PubMed ID: 1202276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dauricine-induced changes in monophasic action potentials and effective refractory period of rabbit left ventricle in situ.
    Xia JS; Li Z; Dong JW; Tu H; Zeng FD
    Acta Pharmacol Sin; 2002 Apr; 23(4):371-5. PubMed ID: 11931697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular mechanism of the functional refractory period in ventricular muscle.
    Ramza BM; Tan RC; Osaka T; Joyner RW
    Circ Res; 1990 Jan; 66(1):147-62. PubMed ID: 2295136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myocardial and ventricular function. Part II: Intact heart.
    Strobeck JE; Sonnenblick EH
    Herz; 1981 Oct; 6(5):275-87. PubMed ID: 7298007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nisoldipine on coronary resistance, contractility and oxygen consumption of the isolated blood-perfused canine left ventricle.
    Schipke JD; Burkhoff D; Alexander J; Schaefer J; Sagawa K
    J Pharmacol Exp Ther; 1988 Mar; 244(3):1000-4. PubMed ID: 3252017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.