These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Signal transmission in the catfish retina. V. Sensitivity and circuit. Sakai HM; Naka K J Neurophysiol; 1987 Dec; 58(6):1329-50. PubMed ID: 2830371 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of skate horizontal cells. Naka K; Chappell RL; Sakuranaga M; Ripps H J Gen Physiol; 1988 Dec; 92(6):811-31. PubMed ID: 3216189 [TBL] [Abstract][Full Text] [Related]
5. Response dynamics and receptive-field organization of catfish amacrine cells. Sakai HM; Naka K J Neurophysiol; 1992 Feb; 67(2):430-42. PubMed ID: 1569468 [TBL] [Abstract][Full Text] [Related]
6. Processing of color- and noncolor-coded signals in the gourami retina. I. Horizontal cells. Sakai HM; Machuca H; Naka KI J Neurophysiol; 1997 Oct; 78(4):2002-17. PubMed ID: 9325369 [TBL] [Abstract][Full Text] [Related]
7. Dynamic changes in the receptive fields of L1-type horizontal cells in the retina of the turtle Mauremys caspica. Bornstein O; Twig G; Benda J; Weiler R; Perlman I Vis Neurosci; 2002; 19(5):621-32. PubMed ID: 12507328 [TBL] [Abstract][Full Text] [Related]
8. White noise analysis of a chromatic type horizontal cell in the Xenopus retina. Stone SL J Gen Physiol; 1994 Jun; 103(6):991-1017. PubMed ID: 7931141 [TBL] [Abstract][Full Text] [Related]
10. Contrast gain control in the lower vertebrate retinas. Sakai HM; Wang JL; Naka K J Gen Physiol; 1995 Jun; 105(6):815-35. PubMed ID: 7561745 [TBL] [Abstract][Full Text] [Related]
11. Sensitivity transformation for vertebrate vision. Chappell RL; Naka K Vis Neurosci; 1991 Apr; 6(4):371-4. PubMed ID: 2059570 [TBL] [Abstract][Full Text] [Related]
12. Receptive-field size of L1 horizontal cells in the turtle retina: effects of dopamine and background light. Perlman I; Ammermüller J J Neurophysiol; 1994 Dec; 72(6):2786-95. PubMed ID: 7897489 [TBL] [Abstract][Full Text] [Related]
13. Turtle and catfish horizontal cells show different dynamic response. Chappell RL; Naka K; Sakuranaga M Vision Res; 1984; 24(2):117-9. PubMed ID: 6710873 [TBL] [Abstract][Full Text] [Related]
14. Temporal tuning and nonlinearity of intraretinal pathways in turtle: effects of temperature, stimulus intensity, and size. Adolph AR Biol Cybern; 1985; 52(1):59-69. PubMed ID: 4005316 [TBL] [Abstract][Full Text] [Related]
15. Processing of color- and noncolor-coded signals in the gourami retina. III. Ganglion cells. Sakai HM; Machuca H; Korenberg MJ; Naka KI J Neurophysiol; 1997 Oct; 78(4):2034-47. PubMed ID: 9325371 [TBL] [Abstract][Full Text] [Related]
16. Center-surround antagonistic organization in small-field luminosity horizontal cells of turtle retina. Piccolino M; Neyton J; Gerschenfeld H J Neurophysiol; 1981 Mar; 45(3):363-75. PubMed ID: 7218006 [TBL] [Abstract][Full Text] [Related]
17. Modelling the effects of a negative feedback circuit from horizontal cells to cones on the impulse responses of cones and horizontal cells in the catfish retina. Siminoff R Biol Cybern; 1985; 52(5):307-13. PubMed ID: 4052498 [TBL] [Abstract][Full Text] [Related]
18. Homogeneity and diversity of color-opponent horizontal cells in the turtle retina: Consequences for potential wavelength discrimination. Twig G; Perlman I J Vis; 2004 May; 4(5):403-14. PubMed ID: 15330723 [TBL] [Abstract][Full Text] [Related]
19. Membrane currents of horizontal cells isolated from turtle retina. Golard A; Witkovsky P; Tranchina D J Neurophysiol; 1992 Aug; 68(2):351-61. PubMed ID: 1382117 [TBL] [Abstract][Full Text] [Related]
20. Retinal light adaptation--evidence for a feedback mechanism. Tranchina D; Gordon J; Shapley RM Nature; 1984 Jul 26-Aug 1; 310(5975):314-6. PubMed ID: 6462216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]