These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 4056861)

  • 41. Computerized densitometry and color coding of [14C] deoxyglucose autoradiographs.
    Goochee C; Rasband W; Sokoloff L
    Ann Neurol; 1980 Apr; 7(4):359-70. PubMed ID: 6769382
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of Odor Hedonics: Experience-Dependent Ontogeny of Circuits Supporting Maternal and Predator Odor Responses in Rats.
    Perry RE; Al Aïn S; Raineki C; Sullivan RM; Wilson DA
    J Neurosci; 2016 Jun; 36(25):6634-50. PubMed ID: 27335397
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Morphology and odor sensitivity of regenerated snail tentacles.
    Chase R; Kamil R
    J Neurobiol; 1983 Jan; 14(1):43-50. PubMed ID: 6827262
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Localization of synaptic responses in the in vitro turtle olfactory bulb using the [14C]2-deoxyglucose method.
    Greer CA; Mori K; Shepherd GM
    Brain Res; 1981 Aug; 217(2):295-303. PubMed ID: 6265037
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stimulation-induced [14C]2-deoxyglucose labeling of synaptic activity in the central auditory system.
    Nudo RJ; Masterton RB
    J Comp Neurol; 1986 Mar; 245(4):553-65. PubMed ID: 3009561
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of autoradiographic analysis of 2-deoxyglucose in the study of locomotion.
    Shimamura M; Edgerton VR; Kogure I
    J Neurosci Methods; 1987 Oct; 21(2-4):303-10. PubMed ID: 3682880
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neurobehavioral responses of neonatal rats to previously experienced odors of different concentrations.
    Carmi O; Leon M
    Brain Res Dev Brain Res; 1991 Dec; 64(1-2):43-6. PubMed ID: 1786647
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multidimensional chemotopic responses to n-aliphatic acid odorants in the rat olfactory bulb.
    Johnson BA; Woo CC; Hingco EE; Pham KL; Leon M
    J Comp Neurol; 1999 Jul; 409(4):529-48. PubMed ID: 10376738
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A comparative study of 2-deoxyglucose patterns of glomerular activation in the olfactory bulbs of C57 BL/6J and AKR/J mice.
    Sicard G; Royet JP; Jourdan F
    Brain Res; 1989 Mar; 481(2):325-34. PubMed ID: 2720385
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Increased uptake of [3H]deoxyglucose and [14C]deoxyglucose in localized regions of the brain during stimulation of the motor cortex.
    Goldberg L; Courville J; Lund JP; Kauer JS
    Can J Physiol Pharmacol; 1980 Sep; 58(9):1086-91. PubMed ID: 7459699
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Asymmetric uptake of 2-deoxy-D-[14C]glucose in the dorsal cochlear nucleus during Pavlovian conditioning in the rabbit.
    Harvey JA; Winsky L; Schindler CW; McMaster SE; Welsh JP
    Brain Res; 1988 May; 449(1-2):213-24. PubMed ID: 3395846
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel peripheral motor neurons in the posterior tentacles of the snail responsible for local tentacle movements.
    Hernádi L; Kiss T; Krajcs N; Teyke T
    Invert Neurosci; 2014 Sep; 14(2):127-36. PubMed ID: 24821413
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acid lability of metabolites of 2-deoxyglucose in rat brain: implications for estimates of kinetic parameters of deoxyglucose phosphorylation and transport between blood and brain.
    Dienel GA; Cruz NF; Mori K; Sokoloff L
    J Neurochem; 1990 Apr; 54(4):1440-8. PubMed ID: 2156023
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Methods for 3H-2-D-deoxyglucose autoradiography on film and fine-grain emulsions.
    Faraco-Cantin F; Courville J; Lund JP
    Stain Technol; 1980 Jul; 55(4):247-52. PubMed ID: 7444985
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatial patterns of olfactory bulb single-unit responses to learned olfactory cues in young rats.
    Wilson DA; Leon M
    J Neurophysiol; 1988 Jun; 59(6):1770-82. PubMed ID: 3404204
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 2-deoxyglucose autoradiography of single motor units: labeling of individual acutely active muscle fibers.
    Toop J; Burke RE; Dum RP; O'Donovan MJ; Smith CB
    J Neurosci Methods; 1982 Mar; 5(3):283-9. PubMed ID: 7078259
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cerebral glucose utilization: comparison of [14C]deoxyglucose and [6-14C]glucose quantitative autoradiography.
    Collins RC; McCandless DW; Wagman IL
    J Neurochem; 1987 Nov; 49(5):1564-70. PubMed ID: 3668540
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cochlear deoxyglucose uptake: relationship to stimulus intensity.
    Goodwin PC; Ryan AF; Sharp FR; Woolf NK; Davidson TM
    Hear Res; 1984 Sep; 15(3):215-24. PubMed ID: 6501111
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modified technique for cytochrome oxidase histochemistry: increased staining intensity and compatibility with 2-deoxyglucose autoradiography.
    Silverman MS; Tootell RB
    J Neurosci Methods; 1987 Jan; 19(1):1-10. PubMed ID: 2434810
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Early unilateral deprivation modifies olfactory bulb function.
    Guthrie KM; Wilson DA; Leon M
    J Neurosci; 1990 Oct; 10(10):3402-12. PubMed ID: 1976769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.