These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 4057058)

  • 1. Performance of Bayesian feedback to forecast lidocaine serum concentration: evaluation of the prediction error and the prediction interval.
    Vozeh S; Uematsu T; Hauf GF; Follath F
    J Pharmacokinet Biopharm; 1985 Apr; 13(2):203-12. PubMed ID: 4057058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of individual dosage requirements for lignocaine: a validation study for Bayesian forecasting in Japanese patients.
    Uematsu T; Hirayama H; Nagashima S; Yamazaki T; Tsuchiya N; Sato R; Nakashima M
    Ther Drug Monit; 1989; 11(1):25-31. PubMed ID: 2911849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimates of the population pharmacokinetic parameters and performance of Bayesian feedback: a sensitivity analysis.
    Vozeh S; Steiner C
    J Pharmacokinet Biopharm; 1987 Oct; 15(5):511-28. PubMed ID: 3694495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A prospective study for validation of Bayesian prediction approach to adjust individual lidocaine dosage.
    Uematsu T; Hirayama H; Umemura K; Kosuge K; Nakashima M
    Int J Clin Pharmacol Ther; 1994 Jan; 32(1):33-7. PubMed ID: 8199750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian pharmacokinetic/pharmacodynamic forecasting of prothrombin response to warfarin therapy: preliminary evaluation.
    Svec JM; Coleman RW; Mungall DR; Ludden TM
    Ther Drug Monit; 1985; 7(2):174-80. PubMed ID: 4024210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical evaluation of population pharmacokinetic parameters in phenytoin dosage adjustment.
    Yukawa E; Higuchi S; Aoyama T
    Chem Pharm Bull (Tokyo); 1989 Dec; 37(12):3363-6. PubMed ID: 2632085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical assessment of a two-compartment Bayesian forecasting method for lidocaine.
    Beach CL; Farringer JA; Peck CC; Crawford MH; Ludden TM; Clementi WA
    Ther Drug Monit; 1988; 10(1):74-9. PubMed ID: 3376185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of a single post-infusion blood sample to estimate the actual peak and trough concentration of tobramycin in critically ill patients.
    Reimann IR; Meier-Hellmann A; Traut T; Reinhart K; Hoffmann A
    Exp Toxicol Pathol; 2003 Jun; 54(5-6):493-8. PubMed ID: 12877363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting serum lithium concentration using Bayesian method: a comparison with other methods.
    Higuchi S; Fukuoka R; Aoyama T; Horioka M
    J Pharmacobiodyn; 1988 Mar; 11(3):158-74. PubMed ID: 3411433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid prediction of individual dosage requirements for lignocaine.
    Vozeh S; Berger M; Wenk M; Ritz R; Follath F
    Clin Pharmacokinet; 1984; 9(4):354-63. PubMed ID: 6467768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive capacity of carbamazepine pharmacokinetic parameters in a Portuguese outpatient population.
    Falcão AC; de Almeida AM; Leitão F; Santos J; Sales F; Caramona MM
    Ther Drug Monit; 1999 Apr; 21(2):224-30. PubMed ID: 10217344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive performance of Bayesian and nonlinear least-squares regression programs for lidocaine.
    Destache CJ; Hilleman DE; Mohiuddin SJ; Lang PT
    Ther Drug Monit; 1992 Aug; 14(4):286-91. PubMed ID: 1519302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for Predicting Warfarin Dose Requirements.
    Saffian SM; Wright DF; Roberts RL; Duffull SB
    Ther Drug Monit; 2015 Aug; 37(4):531-8. PubMed ID: 25549208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of Bayesian, Sawchuk-Zaske, and nomogram dosing methods for vancomycin.
    Garrelts JC; Godley PJ; Horton MW; Karboski JA
    Clin Pharm; 1987 Oct; 6(10):795-9. PubMed ID: 3505841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictions of carbamazepine concentrations using a Bayesian program (PKS System, Abbott): a retrospective evaluation in an outpatient population.
    Gaulier JM; Boulieu R; Fischer C; Mauguiere F
    J Pharm Pharmacol; 1997 Jul; 49(7):734-6. PubMed ID: 9255721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a Bayesian regression program for predicting warfarin response.
    Boyle DA; Ludden TM; Carter BL; Becker AJ; Taylor JW
    Ther Drug Monit; 1989; 11(3):276-84. PubMed ID: 2728086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a two-compartment Bayesian forecasting program for predicting vancomycin concentrations.
    Rodvold KA; Pryka RD; Garrison M; Rotschafer JC
    Ther Drug Monit; 1989; 11(3):269-75. PubMed ID: 2728085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evaluation of Bayesian microcomputer predictions of theophylline concentrations in newborn infants.
    Murphy MG; Peck CC; Merenstein GB; Rodden D
    Ther Drug Monit; 1990 Jan; 12(1):47-53. PubMed ID: 2305421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of various estimates of renal function on prediction of vancomycin concentration by the population mean and Bayesian methods.
    Tsuji Y; Hiraki Y; Mizoguchi A; Sadoh S; Sonemoto E; Kamimura H; Karube Y
    J Clin Pharm Ther; 2009 Aug; 34(4):465-72. PubMed ID: 19583680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Bayesian predictability of vancomycin concentration in patients with various degrees of renal function.
    Ohnishi A; Yano Y; Shimamura K; Oguma T
    Biol Pharm Bull; 2001 Dec; 24(12):1446-50. PubMed ID: 11767122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.