These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 4057997)

  • 1. Fast method for computing the Fourier integral transform via Simpson's numerical integration.
    Simonen P; Olkkonen H
    J Biomed Eng; 1985 Oct; 7(4):337-40. PubMed ID: 4057997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula.
    Shen F; Wang A
    Appl Opt; 2006 Feb; 45(6):1102-10. PubMed ID: 16523770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Fourier analysis of biological transients.
    Harris CM
    J Neurosci Methods; 1998 Aug; 83(1):15-34. PubMed ID: 9765048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory and algorithm of the homeomorphic Fourier transform for optical simulations.
    Wang Z; Baladron-Zorita O; Hellmann C; Wyrowski F
    Opt Express; 2020 Mar; 28(7):10552-10571. PubMed ID: 32225638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast numerical algorithm for the linear canonical transform.
    Hennelly BM; Sheridan JT
    J Opt Soc Am A Opt Image Sci Vis; 2005 May; 22(5):928-37. PubMed ID: 15898553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.
    Xiao Y; Tang X; Qin Y; Peng H; Wang W; Zhong L
    J Opt Soc Am A Opt Image Sci Vis; 2016 Oct; 33(10):2027-2033. PubMed ID: 27828106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The crystallographic fast Fourier transform. I. p3 symmetry.
    Rowicka M; Kudlicki A; Otwinowski Z
    Acta Crystallogr A; 2002 Nov; 58(Pt 6):574-9. PubMed ID: 12388876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time computing for a holographic 3D display based on the sparse distribution of a 3D object and requisite Fourier spectrum.
    Sando Y; Goto Y; Barada D; Yatagai T
    Appl Opt; 2023 Jul; 62(19):5276-5281. PubMed ID: 37707232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Use of Continuous Wavelet Transform Based on the Fast Fourier Transform in the Analysis of Multi-channel Electrogastrography Recordings.
    Komorowski D; Pietraszek S
    J Med Syst; 2016 Jan; 40(1):10. PubMed ID: 26573647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomedical signal processing (in four parts). Part 2. The frequency transforms and their inter-relationships.
    Challis RE; Kitney RI
    Med Biol Eng Comput; 1991 Jan; 29(1):1-17. PubMed ID: 2016912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fast Algorithm for Computing the Fourier Spectrum of a Fractional Period.
    Wang J; Yin C
    J Comput Biol; 2021 Mar; 28(3):269-282. PubMed ID: 33290131
    [No Abstract]   [Full Text] [Related]  

  • 12. The crystallographic fast Fourier transform. IV. FFT-asymmetric units in the reciprocal space.
    Kudlicki A; Rowicka M; Otwinowski Z
    Acta Crystallogr A; 2004 Mar; 60(Pt 2):146-52. PubMed ID: 14966326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fast discrete S-transform for biomedical signal processing.
    Brown RA; Frayne R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2586-9. PubMed ID: 19163232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast Fourier transform-based correlation of DNA sequences using complex plane encoding.
    Cheever EA; Overton GC; Searls DB
    Comput Appl Biosci; 1991 Apr; 7(2):143-54. PubMed ID: 2059838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the semi-analytical Fourier transform to electromagnetic modeling.
    Wang Z; Zhang S; Baladron-Zorita O; Hellmann C; Wyrowski F
    Opt Express; 2019 May; 27(11):15335-15350. PubMed ID: 31163731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm.
    GarcĂ­a J; Mas D; Dorsch RG
    Appl Opt; 1996 Dec; 35(35):7013-8. PubMed ID: 21151302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrete fractional Fourier transform as a fast algorithm for evaluating the diffraction pattern of pulsed radiation.
    Hanna MT; Shaarawi AM; Seif NP; Ahmed WA
    J Opt Soc Am A Opt Image Sci Vis; 2011 Aug; 28(8):1610-9. PubMed ID: 21811323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise and fast spatial-frequency analysis using the iterative local Fourier transform.
    Lee S; Choi H; Kim DW
    Opt Express; 2016 Sep; 24(19):22110-20. PubMed ID: 27661946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The crystallographic fast Fourier transform. II. One-step symmetry reduction.
    Rowicka M; Kudlicki A; Otwinowski Z
    Acta Crystallogr A; 2003 Mar; 59(Pt 2):172-82. PubMed ID: 12604857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical transfer function calculation by Winograd's fast Fourier transform.
    Heshmaty-Manesh D; Tarn SC
    Appl Opt; 1982 Sep; 21(18):3273-7. PubMed ID: 20396222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.