These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 4058056)

  • 21. The electrical characteristics of carbon fibre microelectrodes.
    Fox K; Armstrong-James M; Millar J
    J Neurosci Methods; 1980 Oct; 3(1):37-48. PubMed ID: 7230877
    [No Abstract]   [Full Text] [Related]  

  • 22. A multiwire microelectrode for single unit recording in deep brain structures.
    Jaeger D; Gilman S; Aldridge JW
    J Neurosci Methods; 1990 May; 32(2):143-8. PubMed ID: 2114505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A slim needle-shaped multiwire microelectrode for intracerebral recording.
    Jellema T; Weijnen JA
    J Neurosci Methods; 1991 Dec; 40(2-3):203-9. PubMed ID: 1800856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [A microelectrode pre-amplifier with automatic compensation for electrode potentials].
    Gusev AG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1974; 24(4):866-9. PubMed ID: 4450801
    [No Abstract]   [Full Text] [Related]  

  • 25. Coincident recording and stimulation of single and multiple neuronal activity with one extracellular microelectrode.
    Hentall ID
    J Neurosci Methods; 1991 Dec; 40(2-3):181-91. PubMed ID: 1800855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon fibre microelectrodes.
    Armstrong-James M; Millar J
    J Neurosci Methods; 1979 Oct; 1(3):279-87. PubMed ID: 544972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records.
    McNaughton BL; O'Keefe J; Barnes CA
    J Neurosci Methods; 1983 Aug; 8(4):391-7. PubMed ID: 6621101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Simple device for compensating for the stimulus artifact during stimulation and recording through a single microelectrode].
    Verbnyĭ IaI; Vinetskiĭ VM
    Fiziol Zh SSSR Im I M Sechenova; 1984 Nov; 70(11):1571-3. PubMed ID: 6519290
    [No Abstract]   [Full Text] [Related]  

  • 29. Review of signal distortion through metal microelectrode recording circuits and filters.
    Nelson MJ; Pouget P; Nilsen EA; Patten CD; Schall JD
    J Neurosci Methods; 2008 Mar; 169(1):141-57. PubMed ID: 18242715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptation of the Reitboeck method of multiple microelectrode recording to the neocortex of the waking monkey.
    Mountcastle VB; Reitboeck HJ; Poggio GF; Steinmetz MA
    J Neurosci Methods; 1991 Jan; 36(1):77-84. PubMed ID: 2062112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A quasi-totally shielded, low-capacitance glass-microelectrode with suitable amplifiers for high-frequency intracellular potential and impedance measurements.
    Suzuki K; Rohlicek V; Frömter E
    Pflugers Arch; 1978 Dec; 378(2):141-8. PubMed ID: 569835
    [No Abstract]   [Full Text] [Related]  

  • 32. A multi-channel, implantable microdrive system for use with sharp, ultra-fine "Reitboeck" microelectrodes.
    Swadlow HA; Bereshpolova Y; Bezdudnaya T; Cano M; Stoelzel CR
    J Neurophysiol; 2005 May; 93(5):2959-65. PubMed ID: 15601730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Floating microelectrode for recording the spike activity of the cerebral neurons of homeothermic animals].
    Butukhanov VV; Stepanov II; Gevorgian EG
    Fiziol Zh SSSR Im I M Sechenova; 1981 May; 67(5):764-7. PubMed ID: 7286311
    [No Abstract]   [Full Text] [Related]  

  • 34. Tip potential of open-tip glass microelectrodes: theoretical and experimental studies.
    Gagné S; Plamondon R
    Can J Physiol Pharmacol; 1983 Aug; 61(8):857-69. PubMed ID: 6627127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quartz micropipettes for intracellular voltage microelectrodes and ion-selective microelectrodes.
    Munoz JL; Coles JA
    J Neurosci Methods; 1987 Nov; 22(1):57-64. PubMed ID: 2826932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of low-melting-point alloy microelectrode and monolithic spray tip for integration of glass chip with electrospray ionization mass spectrometry.
    Zhu Y; Pan JZ; Su Y; He QH; Fang Q
    Talanta; 2010 May; 81(3):1069-75. PubMed ID: 20298895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An apparatus for the assembly of a combined single barrel recording electrode and a multibarrelled micropipette.
    Tamura Y; Maruyama S
    J Neurosci Methods; 1979 Oct; 1(3):249-52. PubMed ID: 544969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An ultracompliant glass microelectrode for intracellular recording.
    Fedida D; Sethi S; Mulder BJ; ter Keurs HE
    Am J Physiol; 1990 Jan; 258(1 Pt 1):C164-70. PubMed ID: 2301563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A review of printed circuit microelectrodes and their production.
    Pickard RS
    J Neurosci Methods; 1979 Dec; 1(4):301-18. PubMed ID: 544973
    [No Abstract]   [Full Text] [Related]  

  • 40. Marking microelectrode penetrations with fluorescent dyes.
    DiCarlo JJ; Lane JW; Hsiao SS; Johnson KO
    J Neurosci Methods; 1996 Jan; 64(1):75-81. PubMed ID: 8869487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.