BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 4058329)

  • 1. [Glucose consumption and dehydrogenase activity of the cells of the arsenite-oxidizing bacterium Pseudomonas putida].
    Abdrashitova SA; Abdullina GG; Ilialetdinov AN
    Mikrobiologiia; 1985; 54(4):679-81. PubMed ID: 4058329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Catalase activity of a Pseudomonas putida strain oxidizing arsenic].
    Abdrashitova SA; Ilialetdinov AN; Mynbaeva BN; Abdullina GG
    Mikrobiologiia; 1982; 51(1):34-7. PubMed ID: 7070307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Phosphate and glucose accumulation by Pseudomonas cultures in relation to their arsenic resistance].
    Mynbaeva BN; Okorokov LA; Abdrashitova SA; Ilialetdinov AN
    Mikrobiologiia; 1984; 53(5):822-5. PubMed ID: 6439982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constitutive arsenite oxidase expression detected in arsenic-hypertolerant Pseudomonas xanthomarina S11.
    Koechler S; Arsène-Ploetze F; Brochier-Armanet C; Goulhen-Chollet F; Heinrich-Salmeron A; Jost B; Lièvremont D; Philipps M; Plewniak F; Bertin PN; Lett MC
    Res Microbiol; 2015 Apr; 166(3):205-14. PubMed ID: 25753102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic-resistant proteobacterium from the phyllosphere of arsenic-hyperaccumulating fern (Pteris vittata L.) reduces arsenate to arsenite.
    Rathinasabapathi B; Raman SB; Kertulis G; Ma L
    Can J Microbiol; 2006 Jul; 52(7):695-700. PubMed ID: 16917527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic biotransformation potential of microbial arsH responses in the biogeochemical cycling of arsenic-contaminated groundwater.
    Chang JS; Yoon IH; Kim KW
    Chemosphere; 2018 Jan; 191():729-737. PubMed ID: 29080535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes.
    Inskeep WP; Macur RE; Hamamura N; Warelow TP; Ward SA; Santini JM
    Environ Microbiol; 2007 Apr; 9(4):934-43. PubMed ID: 17359265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil.
    Bahar MM; Megharaj M; Naidu R
    Biodegradation; 2012 Nov; 23(6):803-12. PubMed ID: 22760225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of arsenite-oxidizing bacteria from arsenic-enriched sediments from Camarones river, Northern Chile.
    Valenzuela C; Campos VL; Yañez J; Zaror CA; Mondaca MA
    Bull Environ Contam Toxicol; 2009 May; 82(5):593-6. PubMed ID: 19190837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis.
    Handley KM; Héry M; Lloyd JR
    Environ Microbiol; 2009 Jun; 11(6):1601-11. PubMed ID: 19226300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand.
    Anderson CR; Cook GM
    Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and ars detoxification of arsenite-oxidizing bacteria from abandoned arsenic-contaminated mines.
    Chang JS; Yoon IH; Kim KW
    J Microbiol Biotechnol; 2007 May; 17(5):812-21. PubMed ID: 18051304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments.
    Hamamura N; Macur RE; Korf S; Ackerman G; Taylor WP; Kozubal M; Reysenbach AL; Inskeep WP
    Environ Microbiol; 2009 Feb; 11(2):421-31. PubMed ID: 19196273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. INDUCTION AND MECHANISMS OF ARSENITE RESISTANCE IN PSEUDOMONAS PSEUDOMALLEI.
    ARIMA K; BEPPU M
    J Bacteriol; 1964 Jul; 88(1):143-50. PubMed ID: 14197879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial oxidation of arsenite. III. Cell-free arsenite dehydrogenase.
    LEGGE JW; TURNER AW
    Aust J Biol Sci; 1954 Nov; 7(4):496-503. PubMed ID: 13229845
    [No Abstract]   [Full Text] [Related]  

  • 16. Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44.
    Cai L; Rensing C; Li X; Wang G
    Appl Microbiol Biotechnol; 2009 Jun; 83(4):715-25. PubMed ID: 19283378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Autotrophic arsenic oxidation by a Pseudomonas arsenitoxidans culture].
    Ilialetdinov AN; Abdrashitova SA
    Mikrobiologiia; 1981; 50(2):197-204. PubMed ID: 7242389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of arsenic from groundwater by arsenite-oxidizing bacteria.
    Ike M; Miyazaki T; Yamamoto N; Sei K; Soda S
    Water Sci Technol; 2008; 58(5):1095-100. PubMed ID: 18824809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyanotrophic and arsenic oxidizing activities of Pseudomonas mendocina P6115 isolated from mine tailings containing high cyanide concentration.
    Miranda-Carrazco A; Vigueras-Cortés JM; Villa-Tanaca L; Hernández-Rodríguez C
    Arch Microbiol; 2018 Sep; 200(7):1037-1048. PubMed ID: 29644379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Arsenic oxidation by the heterotrophic bacteria Pseudomonas putida and Alcaligenes eutrophus].
    Abdrashitova SA; Mynbaeva BN; Ilialetdinov AN
    Mikrobiologiia; 1981; 50(1):41-5. PubMed ID: 7219219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.