These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 4058454)

  • 1. Free-energy carriers in human cultured muscle cells.
    Bolhuis PA; de Zwart HJ; Ponne NJ; de Jong JM
    Muscle Nerve; 1985 Jan; 8(1):22-6. PubMed ID: 4058454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gated dynamic 31P MRS shows reduced contractile phosphocreatine breakdown in mice deficient in cytosolic creatine kinase and adenylate kinase.
    Kan HE; Veltien A; Arnts H; Nabuurs CI; Luijten B; de Haan A; Wieringa B; Heerschap A
    NMR Biomed; 2009 Jun; 22(5):523-31. PubMed ID: 19156695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interferon-gamma inhibits proliferation, differentiation, and creatine kinase activity of cultured human muscle cells. II. A possible role in myositis.
    Kalovidouris AE; Plotkin Z; Graesser D
    J Rheumatol; 1993 Oct; 20(10):1718-23. PubMed ID: 8295184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Murine muscles deficient in creatine kinase tolerate repeated series of high-intensity contractions.
    Gorselink M; Drost MR; van der Vusse GJ
    Pflugers Arch; 2001 Nov; 443(2):274-9. PubMed ID: 11713654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isozymes of creatine kinase in mammalian cell cultures.
    Van Brussel E; Yang JJ; Seraydarian MW
    J Cell Physiol; 1983 Aug; 116(2):221-6. PubMed ID: 6863402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and differentiation of myogenic clones from adult human muscle cell cultures.
    Meola G; Velicogna M; Brigato C; Pizzul S; Rotondo G; Scarlato G
    Eur J Basic Appl Histochem; 1991; 35(3):219-31. PubMed ID: 1932334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy related metabolic alterations in diaphragm muscle resulting from acute methomyl toxicity.
    Gupta RC; Goad JT; Kadel WL
    Neurotoxicology; 1994; 15(2):321-30. PubMed ID: 7991221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemin enhances differentiation and maturation of cultured regenerated skeletal myotubes.
    Funanage VL; Schroedl NA; Moses PA; Smith SM; Kirwin JJ; Hartzell CR
    J Cell Physiol; 1989 Dec; 141(3):591-7. PubMed ID: 2592428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Creatine kinase system and muscle energy metabolism].
    Chetverikova EP
    Zh Obshch Biol; 1981; 42(4):586-96. PubMed ID: 7025505
    [No Abstract]   [Full Text] [Related]  

  • 10. Adenylate kinase: kinetic behavior in intact cells indicates it is integral to multiple cellular processes.
    Dzeja PP; Zeleznikar RJ; Goldberg ND
    Mol Cell Biochem; 1998 Jul; 184(1-2):169-82. PubMed ID: 9746320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in creatine kinase in fresh muscle and cell cultures in Duchenne dystrophy.
    Ionasescu V; Ionasescu R; Feld R; Witte D; Cancilla P; Kaeding L; Stern LZ
    Ann Neurol; 1981 Apr; 9(4):394-9. PubMed ID: 7224603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of IGF-1 on proliferation and differentiation of primary human embryonic myoblasts].
    Cen S; Zhang J; Huang F; Yang Z; Xie H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Jan; 22(1):84-7. PubMed ID: 18361246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and cellular localization of glucose transporters (GLUT1, GLUT3, GLUT4) during differentiation of myogenic cells isolated from rat foetuses.
    Guillet-Deniau I; Leturque A; Girard J
    J Cell Sci; 1994 Mar; 107 ( Pt 3)():487-96. PubMed ID: 8006068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 31P-NMR study on intracellular energy transport in muscle.
    Yoshizaki K
    Prog Clin Biol Res; 1989; 315():177-84. PubMed ID: 2798486
    [No Abstract]   [Full Text] [Related]  

  • 15. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle.
    Ponticos M; Lu QL; Morgan JE; Hardie DG; Partridge TA; Carling D
    EMBO J; 1998 Mar; 17(6):1688-99. PubMed ID: 9501090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of energy metabolism by creatine in cardiac and skeletal muscle cells in culture.
    Seraydarian MW; Artaza L
    J Mol Cell Cardiol; 1976 Sep; 08(9):669-78. PubMed ID: 972404
    [No Abstract]   [Full Text] [Related]  

  • 17. [Creatine induction of creatine kinase synthesis in a developing monolayer culture of muscle cells].
    Sokolov IN; Lyzlova SN; Ashmarin IP
    Biokhimiia; 1975; 40(1):3-7. PubMed ID: 1139000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of human myoblast cultures for tissue engineering.
    Stern-Straeter J; Bran G; Riedel F; Sauter A; Hörmann K; Goessler UR
    Int J Mol Med; 2008 Jan; 21(1):49-56. PubMed ID: 18097615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential signalling mechanisms predisposing primary human skeletal muscle cells to altered proliferation and differentiation: roles of IGF-I and TNFalpha.
    Foulstone EJ; Huser C; Crown AL; Holly JM; Stewart CE
    Exp Cell Res; 2004 Mar; 294(1):223-35. PubMed ID: 14980516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and validation of human prepubertal skeletal muscle cells: maturation and metabolic effects of IGF-I, IGFBP-3 and TNFalpha.
    Grohmann M; Foulstone E; Welsh G; Holly J; Shield J; Crowne E; Stewart C
    J Physiol; 2005 Oct; 568(Pt 1):229-42. PubMed ID: 16081485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.