These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 40586)

  • 1. Cross-linking of membrane proteins of metabolically-depleted and calcium-loaded erythrocytes.
    Coetzer TL; Zail SS
    Br J Haematol; 1979 Nov; 43(3):375-90. PubMed ID: 40586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic dependence of protein arrangement in human erythrocyte membranes. II. Crosslinking of major proteins in ghosts from fresh and ATP-depleted red cells.
    Liu SC; Palek J
    Blood; 1979 Nov; 54(5):1117-30. PubMed ID: 40634
    [No Abstract]   [Full Text] [Related]  

  • 3. Reduced transglutaminase-catalyzed cross-linking of exogenous amines to membrane proteins in sickle erythrocytes.
    Ballas SK; Mohandas N; Clark MR; Embury SH; Smith ED; Marton LJ; Shohet SB
    Biochim Biophys Acta; 1985 Jan; 812(1):234-42. PubMed ID: 2857092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-linking of lipocortin I and enhancement of its Ca2+ sensitivity by tissue transglutaminase.
    Ando Y; Imamura S; Owada MK; Kakunaga T; Kannagi R
    Biochem Biophys Res Commun; 1989 Sep; 163(2):944-51. PubMed ID: 2571332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-induced intracellular cross-linking of lipocortin I by tissue transglutaminase in A431 cells. Augmentation by membrane phospholipids.
    Ando Y; Imamura S; Owada MK; Kannagi R
    J Biol Chem; 1991 Jan; 266(2):1101-8. PubMed ID: 1670773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separate mechanisms of deformability loss in ATP-depleted and Ca-loaded erythrocytes.
    Clark MR; Mohandas N; Feo C; Jacobs MS; Shohet SB
    J Clin Invest; 1981 Feb; 67(2):531-9. PubMed ID: 6780609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+-dependent cross-linking processes in human platelets.
    Cohen I; Glaser T; Veis A; Bruner-Lorand J
    Biochim Biophys Acta; 1981 Aug; 676(2):137-47. PubMed ID: 6114753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the intrinsic transglutaminase in the Ca2+-mediated crosslinking of erythrocyte proteins.
    Lorand L; Weissmann LB; Epel DL; Bruner-Lorand J
    Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4479-81. PubMed ID: 12508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different sensitivities of rat and human red cells to exogenous Ca2+.
    Swislocki NI; Tierney JM
    Am J Hematol; 1989 May; 31(1):1-10. PubMed ID: 2565076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The combined effect of IDA and glutaraldehyde on the erythrocyte membrane proteins.
    Marczak A; Walczak M; Jóźwiak Z
    Int J Pharm; 2007 Apr; 335(1-2):154-162. PubMed ID: 17158004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+-modulated cross-linking of membrane proteins in intact erythrocytes.
    Siefring GE; Lorand L
    Prog Clin Biol Res; 1978; 20():25-36. PubMed ID: 26061
    [No Abstract]   [Full Text] [Related]  

  • 12. Formation of gamma-glutamyl-epsilon-lysine bridges between membrane proteins by a Ca2+-regulated enzyme in intact erythrocytes.
    Lorand L; Siefring GE; Lowe-Krentz L
    J Supramol Struct; 1978; 9(3):427-40. PubMed ID: 34754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction of DNR and glutaraldehyde with cell membrane proteins leads to morphological changes in erythrocytes.
    Marczak A; Jóźwiak Z
    Cancer Lett; 2008 Feb; 260(1-2):118-26. PubMed ID: 18060688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the calcium-mediated enzymatic cross-linking of membrane proteins on cellular deformability.
    Smith BD; La Celle PL; Siefring GE; Lowe-Krentz L; Lorand L
    J Membr Biol; 1981; 61(2):75-80. PubMed ID: 6792358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention of water and potassium by erythrocytes prevents calcium-induced membrane rigidity.
    Dreher KL; Eaton JW; Kuettner JF; Breslawec KP; Blackshear PL; White JG
    Am J Pathol; 1978 Jul; 92(1):215-25. PubMed ID: 356623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187.
    Campbell AK; Siddle K
    Biochem J; 1976 Aug; 158(2):211-21. PubMed ID: 186033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic basis for the Ca2+-induced cross-linking of membrane proteins in intact human erythrocytes.
    Siefring GE; Apostol AB; Velasco PT; Lorand L
    Biochemistry; 1978 Jun; 17(13):2598-604. PubMed ID: 28146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformability of isolated red blood cell membranes.
    Heath BP; Mohandas N; Wyatt JL; Shohet SB
    Biochim Biophys Acta; 1982 Oct; 691(2):211-9. PubMed ID: 6814487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors raising intracellular calcium increase red blood cell heterogeneity in density and critical osmolality.
    Lisovskaya IL; Rozenberg JM; Nesterenko VM; Samokhina AA
    Med Sci Monit; 2004 Mar; 10(3):BR67-76. PubMed ID: 14976462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane skeletal protein structure and interactions in human erythrocytes after their treatment with diamide and calcium.
    Kumar J; Gupta CM
    Indian J Biochem Biophys; 1992 Apr; 29(2):123-7. PubMed ID: 1398703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.