These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 4059025)

  • 1. A cytoplasmic component of pyridine nucleotide fluorescence in rat diaphragm: evidence from comparisons with flavoprotein fluorescence.
    Paddle BM
    Pflugers Arch; 1985 Aug; 404(4):326-31. PubMed ID: 4059025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the redox distribution of rat liver by ischemia.
    Kitai T; Tanaka A; Tokuka A; Ozawa K; Iwata S; Chance B
    Anal Biochem; 1992 Oct; 206(1):131-6. PubMed ID: 1456424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of fluorescence changes of NAD(P)H and of fluorescent flavoproteins in saponin-skinned human skeletal muscle fibers.
    Kunz WS; Kuznetsov AV; Winkler K; Gellerich FN; Neuhof S; Neumann HW
    Anal Biochem; 1994 Feb; 216(2):322-7. PubMed ID: 8179187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals.
    Chance B; Schoener B; Oshino R; Itshak F; Nakase Y
    J Biol Chem; 1979 Jun; 254(11):4764-71. PubMed ID: 220260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence of pyridine nucleotide and flavoproteins as an indicator of substrate oxidation and oxygen demand of the isolated perfused rat kidney.
    Franke H; Barlow CH; Chance B
    Int J Biochem; 1980; 12(1-2):269-75. PubMed ID: 7399033
    [No Abstract]   [Full Text] [Related]  

  • 6. Scanning fluorometer for the rapid assessment of pyridine nucleotide and flavoprotein fluorescence changes in tissues in vivo.
    Paddle BM; Brown G; Vincent P
    J Biomed Eng; 1986 Oct; 8(4):334-40. PubMed ID: 3762112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive measurements of pyridine nucleotide and flavoprotein in the lens.
    Tsubota K; Laing RA; Kenyon KR
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):785-9. PubMed ID: 3570689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat production and fluorescence changes of toad sartorius muscle during aerobic recovery after a short tetanus.
    Godfraind-de Becker A
    J Physiol; 1972 Jun; 223(3):719-34. PubMed ID: 4339903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lens redox fluorometry: pyridine nucleotide fluorescence and analysis of diabetic lens.
    Tsubota K; Krauss JM; Kenyon KR; Laing RA; Miglior S; Cheng HM
    Exp Eye Res; 1989 Sep; 49(3):321-34. PubMed ID: 2792231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous read-out of cytochrome b, flavin and pyridine nucleotide oxido-reduction processes in the perfused frog heart and contracting skeletal muscle.
    Rossini L; Rossini P; Chance B
    Pharmacol Res; 1991 May; 23(4):349-65. PubMed ID: 1876575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of flavoprotein fluorescence to oxidative state in single isolated heart cells.
    Koke JR; Wylie W; Wills M
    Cytobios; 1981; 32(127-128):139-45. PubMed ID: 7347273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytoplasmic redox potential affects energetics and contractile reactivity of vascular smooth muscle.
    Barron JT; Gu L; Parrillo JE
    J Mol Cell Cardiol; 1997 Aug; 29(8):2225-32. PubMed ID: 9281453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delayed oxidation of intramitochondrial pyridine nucleotide oxido reduction state as compared with tissue oxygenation in human liver transplantation.
    Tokuka A; Tanaka A; Kitai T; Tanaka K; Yamaoka Y; Ozawa K
    Transpl Int; 1994; 7 Suppl 1():S496-8. PubMed ID: 11271290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional imaging of mitochondria in saponin-permeabilized mice muscle fibers.
    Kuznetsov AV; Mayboroda O; Kunz D; Winkler K; Schubert W; Kunz WS
    J Cell Biol; 1998 Mar; 140(5):1091-9. PubMed ID: 9490722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitability and NADH fluorescence of spontaneously active portal veins in relation to glucose withdrawal.
    Linke AM; Betz E
    Blood Vessels; 1979; 16(6):295-301. PubMed ID: 230870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characterization of surface fluorescence signals of isolated perfused rat kidney].
    Krinelke L; Kunz WS
    Biomed Biochim Acta; 1990; 49(11):1119-30. PubMed ID: 2094217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ.
    Wakita M; Nishimura G; Tamura M
    J Biochem; 1995 Dec; 118(6):1151-60. PubMed ID: 8720129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of glucose for mechanical activity, flavin and pyridine nucleotide oxidation-reduction changes in isolated rat portal veins under ACh-stimulation.
    Linke AM; Heinle H; Betz E
    Basic Res Cardiol; 1980; 75(6):739-46. PubMed ID: 7213324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen and glucose withdrawal on portal veins: NADH fluorescence and spontaneous activity.
    Linke AM; Heinle H
    Arch Int Physiol Biochim; 1981 Nov; 89(4):313-22. PubMed ID: 6174089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear correlation between acetoacetate/beta-hydroxybutyrate in arterial blood and oxidized flavoprotein/reduced pyridine nucleotide in freeze-trapped human liver tissue.
    Ozawa K; Chance B; Tanaka A; Iwata S; Kitai T; Ikai I
    Biochim Biophys Acta; 1992 Apr; 1138(4):350-2. PubMed ID: 1562619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.