These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 4059249)

  • 1. Acceleration of ossification by means of interferential current.
    May HU; Nippel FJ; Hansjürgens A; Meyer-Waarden K
    Prog Clin Biol Res; 1985; 187():469-78. PubMed ID: 4059249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Stimulation of bone formation using electrical current].
    Weigert M
    Hefte Unfallheilkd; 1973; 115():Suppl 115:1-10. PubMed ID: 4785558
    [No Abstract]   [Full Text] [Related]  

  • 3. [Electron microscopic study of reparative osteogenesis following electric stimulation of bony tissue regeneration].
    Mikhaĭlova LN; Landa VA
    Biull Eksp Biol Med; 1981 Jun; 91(6):719-22. PubMed ID: 6974018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mechanism of the stimulating effect of an electric current on reparative regeneration of bone tissue].
    Landa VA; Popova MM; Shimkevich LL; Baranov VK
    Biull Eksp Biol Med; 1978 Sep; 86(9):361-2. PubMed ID: 308822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Bone fracture and the healing mechanisms. Fracture treatment using electrical stimulation].
    Yoshida T; Kim WC; Kubo T
    Clin Calcium; 2009 May; 19(5):709-17. PubMed ID: 19398840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical stimulation of bone and its implications for endosseous dental implantation.
    Steiner M; Ramp WK
    J Oral Implantol; 1990; 16(1):20-7. PubMed ID: 2074588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro osteogenesis assays: influence of the primary cell source on alkaline phosphatase activity and mineralization.
    Hoemann CD; El-Gabalawy H; McKee MD
    Pathol Biol (Paris); 2009 Jun; 57(4):318-23. PubMed ID: 18842361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The influence of direct electric current on bone formation (author's transl)].
    Harris WH; Moyen B; Lahey P; Weinberg E
    Rev Chir Orthop Reparatrice Appar Mot; 1979 Sep; 65(6):311-6. PubMed ID: 161635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Investigations of the healing of bone fractures under the influence of electric direct current (author's transl)].
    Bauer U; Kinzl L; Wolter D
    Z Orthop Ihre Grenzgeb; 1974 Jun; 112(3):402-7. PubMed ID: 4277217
    [No Abstract]   [Full Text] [Related]  

  • 10. [Artificial ossification of muscular flap after plastic surgery of the bone cavity under the effect of electric current].
    Tkachenko SS; Mussa M; Rutskiĭ VV
    Biull Eksp Biol Med; 1978 Mar; 85(3):356-9. PubMed ID: 667330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of transforming growth factor beta on cells derived from bone and callus of patients with osteogenesis imperfecta.
    Mörike M; Windsheimer E; Brenner R; Nerlich A; Bushart G; Teller W; Vetter U
    J Orthop Res; 1993 Jul; 11(4):564-72. PubMed ID: 8340828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study on the electrical impedance of bone and the effect of direct current on the healing of fractures.
    Stefan S; Sansen W; Mulier JC
    Clin Orthop Relat Res; 1976 Oct; (120):264-7. PubMed ID: 1086178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light microscopic and electron microscopic observation on experimental fracture healing.
    Tang XM; Chai BF
    Chin Med J (Engl); 1982 Oct; 95(10):721-30. PubMed ID: 6817975
    [No Abstract]   [Full Text] [Related]  

  • 14. Bone healing models in rat tibia after different injuries.
    Hussar P; Piirsoo A; Märtson A; Toom A; Haviko T; Hussar U
    Ann Chir Gynaecol; 2001; 90(4):271-9. PubMed ID: 11820416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of porous bioceramic in experimental therapy of bone injuries. III. Dynamics of the callus development at the site of porous bioceramic implantation. Morphological, histochemical and histoenzymological studies.
    Bieniek J; Kotz J; Bieniek A
    Arch Immunol Ther Exp (Warsz); 1988; 36(1):107-18. PubMed ID: 3233060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axial shortening during distraction osteogenesis leads to enhanced bone formation in a rabbit model through the HIF-1alpha/vascular endothelial growth factor system.
    Mori S; Akagi M; Kikuyama A; Yasuda Y; Hamanishi C
    J Orthop Res; 2006 Apr; 24(4):653-63. PubMed ID: 16514629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth factor stimulation of bone healing. Effects on osteoblasts, osteomies, and implants fixation.
    Lind M
    Acta Orthop Scand Suppl; 1998 Oct; 283():2-37. PubMed ID: 9856074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Bone healing and dynamic interferential current (DIC) (author's transl)].
    Laabs WA; May E; Richter KD; Höhling HJ; Althoff J; Quint P; Hansjürgens A
    Langenbecks Arch Chir; 1982; 356(3):219-29. PubMed ID: 6978444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteogenic growth peptide enhances the rate of fracture healing in rabbits.
    Sun YQ; Ashhurst DE
    Cell Biol Int; 1998; 22(4):313-9. PubMed ID: 10101048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Evaluation of the repair process in mechanically injured rat bone stimulated by sodium fluoride with non-toxic doses].
    Białecki P
    Ann Acad Med Stetin; 1999; 45():195-209. PubMed ID: 10909490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.