These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. What basilar-membrane tuning says about cochlear micromechanics. Zwislocki JJ; Kletsky EJ Am J Otolaryngol; 1982; 3(1):48-52. PubMed ID: 7114390 [TBL] [Abstract][Full Text] [Related]
3. Role of inner and outer hair cells in mechanical frequency selectivity of the cochlea. Strelioff D; Flock A; Minser KE Hear Res; 1985 May; 18(2):169-75. PubMed ID: 4044418 [TBL] [Abstract][Full Text] [Related]
5. Cochlear anatomy related to cochlear micromechanics. A review. Lim DJ J Acoust Soc Am; 1980 May; 67(5):1686-95. PubMed ID: 6768784 [TBL] [Abstract][Full Text] [Related]
6. Direct visualization of organ of corti kinematics in a hemicochlea. Hu X; Evans BN; Dallos P J Neurophysiol; 1999 Nov; 82(5):2798-807. PubMed ID: 10561446 [TBL] [Abstract][Full Text] [Related]
7. Tectorial membrane: a possible sharpening effect on the frequency analysis in the cochlea. Zwislocki JJ Acta Otolaryngol; 1979; 87(3-4):267-9. PubMed ID: 443008 [TBL] [Abstract][Full Text] [Related]
8. Some current concepts of cochlear mechanics. Zwislocki JJ Audiology; 1983; 22(6):517-29. PubMed ID: 6667173 [TBL] [Abstract][Full Text] [Related]
9. Static length changes of cochlear outer hair cells can tune low-frequency hearing. Ciganović N; Warren RL; Keçeli B; Jacob S; Fridberger A; Reichenbach T PLoS Comput Biol; 2018 Jan; 14(1):e1005936. PubMed ID: 29351276 [TBL] [Abstract][Full Text] [Related]
10. Critical bands following the selective destruction of cochlear inner and outer hair cells. Nienhuys TG; Clark GM Acta Otolaryngol; 1979; 88(5-6):350-8. PubMed ID: 532610 [TBL] [Abstract][Full Text] [Related]
11. Auditory mechanics of the tectorial membrane and the cochlear spiral. Gavara N; Manoussaki D; Chadwick RS Curr Opin Otolaryngol Head Neck Surg; 2011 Oct; 19(5):382-7. PubMed ID: 21785353 [TBL] [Abstract][Full Text] [Related]
12. Theory of cochlear mechanics. Zwislocki JJ Hear Res; 1980 Jun; 2(3-4):171-82. PubMed ID: 6997254 [TBL] [Abstract][Full Text] [Related]
13. Cochlear transduction: an integrative model and review. Brownell WE Hear Res; 1982 Apr; 6(3):335-60. PubMed ID: 6282796 [TBL] [Abstract][Full Text] [Related]
14. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti. Lee HY; Raphael PD; Xia A; Kim J; Grillet N; Applegate BE; Ellerbee Bowden AK; Oghalai JS J Neurosci; 2016 Aug; 36(31):8160-73. PubMed ID: 27488636 [TBL] [Abstract][Full Text] [Related]
16. Multiple roles for the tectorial membrane in the active cochlea. Lukashkin AN; Richardson GP; Russell IJ Hear Res; 2010 Jul; 266(1-2):26-35. PubMed ID: 19853029 [TBL] [Abstract][Full Text] [Related]
17. A micromechanical model of the cochlea with radial movement of the tectorial membrane. Fukazawa T; Ishida K; Murai Y Hear Res; 1999 Nov; 137(1-2):59-67. PubMed ID: 10545634 [TBL] [Abstract][Full Text] [Related]
18. Vibration responses of the organ of Corti and the tectorial membrane to electrical stimulation. Nowotny M; Gummer AW J Acoust Soc Am; 2011 Dec; 130(6):3852-72. PubMed ID: 22225042 [TBL] [Abstract][Full Text] [Related]
19. Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti. Kaltenbach JA; Falzarano PR J Comp Neurol; 1994 Feb; 340(1):87-97. PubMed ID: 8176004 [TBL] [Abstract][Full Text] [Related]
20. Tectorial membrane: a possible effect on frequency analysis in the cochlea. Zwislocki JJ; Kletsky EJ Science; 1979 May; 204(4393):639-41. PubMed ID: 432671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]