These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 4061675)

  • 1. Use of dP/dt and rise time to estimate speed of shortening in muscle.
    Stevens ED; Renaud JM
    Am J Physiol; 1985 Nov; 249(5 Pt 2):R510-3. PubMed ID: 4061675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shortening velocity of skeletal muscle from humans with malignant hyperthermia susceptibility: effects of halothane.
    Etchrivi TS; Haudecoeur G; Stix I; Reyford H; Tavernier B; Krivosic-Horber RM; Adnet PJ
    Eur J Pharmacol; 2000 Jan; 388(1):107-13. PubMed ID: 10657553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relative changes in isometric force and work during fatigue and recovery in isolated toad sartorius muscle.
    Stevens ED; Syme DA
    Can J Physiol Pharmacol; 1989 Dec; 67(12):1544-8. PubMed ID: 2627692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determinants of force rise time during isometric contraction of frog muscle fibres.
    Edman KA; Josephson RK
    J Physiol; 2007 May; 580(Pt.3):1007-19. PubMed ID: 17303645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of Vmax in auxotonic systoles from the rate of relative increase of isovolumic pressure: (dP-dt)kP.
    Wolk MJ; Keefe JF; Bing OH; Finkelstein LJ; Levine HJ
    J Clin Invest; 1971 Jun; 50(6):1276-85. PubMed ID: 5578234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of step changes in pH on isometric tetanic tension of toad sartorius muscle.
    Renaud JM; Stevens ED
    Can J Physiol Pharmacol; 1983 Aug; 61(8):830-5. PubMed ID: 6627126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of fatigue and recovery on contractile properties of frog muscle.
    Fitts RH; Holloszy JO
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Dec; 45(6):899-902. PubMed ID: 310431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of shortening velocity on the shortening heat and its relationship to the distance shortened.
    Homsher E; Yamada T
    Adv Exp Med Biol; 1988; 226():689-700. PubMed ID: 3407538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative developed tension in rapidly shortening whole frog muscles.
    Seo JS; Krause PC; McMahon TA
    J Muscle Res Cell Motil; 1994 Feb; 15(1):59-68. PubMed ID: 8182110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximum shortening speed of motor units of various types in cat lumbrical muscles.
    Petit J; Chua M; Hunt CC
    J Neurophysiol; 1993 Feb; 69(2):442-8. PubMed ID: 8459276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force-velocity shifts with repetitive isometric and isotonic contractions of canine gastrocnemius in situ.
    Ameredes BT; Brechue WF; Andrew GM; Stainsby WN
    J Appl Physiol (1985); 1992 Nov; 73(5):2105-11. PubMed ID: 1474091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of tracheal smooth muscle: effects of temperature.
    Stephens NL; Cardinal R; Simmons B
    Am J Physiol; 1977 Sep; 233(3):C92-98. PubMed ID: 910897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of temperature and concomitant change in pH on muscle.
    Stevens ED; Godt RE
    Am J Physiol; 1990 Aug; 259(2 Pt 2):R204-9. PubMed ID: 2201214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isometric relaxation of isolated diaphragm muscle: influence of load, length, time, and stimulation.
    Coirault C; Chemla D; Pery-Man N; Suard I; Salmeron S; Lecarpentier Y
    J Appl Physiol (1985); 1994 Apr; 76(4):1468-75. PubMed ID: 8045821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A translational assessment of preclinical versus clinical tools for the measurement of cardiac contractility: comparison of LV dP/dt(max) with echocardiography in telemetry implanted beagle dogs.
    Cools F; Dhuyvetter D; Vanlommel A; Janssens S; Borghys H; Geys H; Gallacher DJ
    J Pharmacol Toxicol Methods; 2014; 69(1):17-23. PubMed ID: 24140387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contractile properties of rat soleus muscle: effects of training and fatique.
    Fitts RH; Holloszy JO
    Am J Physiol; 1977 Sep; 233(3):C86-91. PubMed ID: 143894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetic aspects of skeletal muscle contraction: implications of fiber types.
    Rall JA
    Exerc Sport Sci Rev; 1985; 13():33-74. PubMed ID: 3159582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal adaptations in lizard muscle function.
    John-Alder HB; Bennett AF
    J Comp Physiol B; 1987; 157(2):241-52. PubMed ID: 3571574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanics of K(+)-induced isotonic and isometric contractions in isolated canine coronary microarteries.
    Boels PJ; Claes VA; Brutsaert DL
    Am J Physiol; 1990 Mar; 258(3 Pt 1):C512-23. PubMed ID: 2316638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear relationship between heat production and force during voluntary contractions in humans.
    Saugen E; Vøllestad NK
    J Appl Physiol (1985); 1995 Dec; 79(6):2043-9. PubMed ID: 8847272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.