These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 4061839)

  • 1. Determination of glutathione in intact and hemolyzed erythrocytes by titration with tert-butyl hydroperoxide with end point detection by 1H nuclear magnetic resonance spectrometry.
    Rabenstein DL; Brown DW; McNeil CJ
    Anal Chem; 1985 Oct; 57(12):2294-9. PubMed ID: 4061839
    [No Abstract]   [Full Text] [Related]  

  • 2. Hemolysis of chicken erythrocytes by t-butyl hydroperoxide and protection by plasma.
    Smith RC; Gore JZ; Roland D
    Poult Sci; 1988 Nov; 67(11):1632-5. PubMed ID: 3237581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radical-mediated damage to parasites and erythrocytes in Plasmodium vinckei infected mice after injection of t-butyl hydroperoxide.
    Clark IA; Hunt NH; Cowden WB; Maxwell LE; Mackie EJ
    Clin Exp Immunol; 1984 Jun; 56(3):524-30. PubMed ID: 6744660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peroxides inhibit the glutathione S-conjugate pump.
    Soszyński M; Skalski Z; Pułaski L; Bartosz G
    Biochem Mol Biol Int; 1995 Oct; 37(3):537-45. PubMed ID: 8595394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prevention by antioxidants of the hemolysis of erythrocytes of cattle, pigs and humans treated with t-butyl hydroperoxide.
    Smith RC; Nunn V
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1986; 84(1):79-82. PubMed ID: 2873957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. The relative roles of haem- and glutathione-dependent decomposition of t-butyl hydroperoxide and membrane lipid hydroperoxides in lipid peroxidation and haemolysis.
    Trotta RJ; Sullivan SG; Stern A
    Biochem J; 1983 Jun; 212(3):759-72. PubMed ID: 6882393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free radical involvement in the oxidative phenomena induced by tert-butyl hydroperoxide in erythrocytes.
    Thornalley PJ; Trotta RJ; Stern A
    Biochim Biophys Acta; 1983 Aug; 759(1-2):16-22. PubMed ID: 6309246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. Effects of the hexose monophosphate shunt as mediated by glutathione and ascorbate.
    Trotta RJ; Sullivan SG; Stern A
    Biochem J; 1982 May; 204(2):405-15. PubMed ID: 7115337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative study of the complexation of cadmium in hemolyzed human erythrocytes by 1H NMR spectroscopy.
    Kadima W; Rabenstein DL
    J Inorg Biochem; 1990 Oct; 40(2):141-9. PubMed ID: 2128706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A methemoglobin-dependent and plasma-stimulated experimental model of oxidative hemolysis.
    Benatti U; Morelli A; Damiani G; De Flora A
    Biochem Biophys Res Commun; 1982 Jun; 106(4):1183-90. PubMed ID: 6810891
    [No Abstract]   [Full Text] [Related]  

  • 11. Different mechanisms of formation of glutathione-protein mixed disulfides of diamide and tert-butyl hydroperoxide in rat blood.
    Di Simplicio P; Lupis E; Rossi R
    Biochim Biophys Acta; 1996 Mar; 1289(2):252-60. PubMed ID: 8600982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The complexation of zinc in intact human erythrocytes studied by 1H spin-echo NMR.
    Rabenstein DL; Isab AA
    FEBS Lett; 1980 Nov; 121(1):61-4. PubMed ID: 7461121
    [No Abstract]   [Full Text] [Related]  

  • 13. Potentiation of oxidative damage to rat red blood cells by the concurrent presence of t-butyl hydroperoxide and bromotrichloromethane.
    Sano M; Kawabata H; Tomita I; Yoshioka H; Hu ML
    J Toxicol Environ Health; 1994 Nov; 43(3):339-50. PubMed ID: 7966442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chemiluminescence assay detecting the antioxidative effects of glutathione and uric acid on erythrocytes and hemolysates exposed to t-butyl hydroperoxide.
    Gümüşlü S; Serteser M; Aydin M; Yücel G
    J Basic Clin Physiol Pharmacol; 1997; 8(1-2):45-56. PubMed ID: 9363568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1H-nuclear magnetic resonance study of the oxidation/reduction chemistry of penicillamine in intact human erythrocytes.
    Millis KK; Rabenstein DL
    Biochim Biophys Acta; 1990 Oct; 1055(1):10-8. PubMed ID: 2171674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H nmr study of the effectiveness of various thiols for removal of methylmercury from hemolyzed erythrocytes.
    Rabenstein DL; Reid RS; Isab AA
    J Inorg Biochem; 1983 Jun; 18(3):241-51. PubMed ID: 6875537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of free radicals from lipid hydroperoxides by Ni2+ in the presence of oligopeptides.
    Shi X; Dalal NS; Kasprzak KS
    Arch Biochem Biophys; 1992 Nov; 299(1):154-62. PubMed ID: 1332613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rat lung glutathione release: response to oxidative stress and selenium deficiency.
    Jenkinson SG; Spence TH; Lawrence RA; Hill KE; Duncan CA; Johnson KH
    J Appl Physiol (1985); 1987 Jan; 62(1):55-60. PubMed ID: 3558197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic t-butyl hydroperoxide reduction on human erythrocyte membranes--NADPH and GSH dependent activities.
    Földes-Papp Z; Maretzki D
    Biomed Biochim Acta; 1984; 43(3):271-9. PubMed ID: 6743303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. t-Butyl hydroperoxide alters fatty acid incorporation into erythrocyte membrane phospholipid.
    Dise CA; Goodman DB
    Biochim Biophys Acta; 1986 Jul; 859(1):69-78. PubMed ID: 3718986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.