BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 4062295)

  • 21. Chemical analysis and hemolytic activity of the fava bean aglycon divicine.
    McMillan DC; Schey KL; Meier GP; Jollow DJ
    Chem Res Toxicol; 1993; 6(4):439-44. PubMed ID: 8374040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of haemolysis on the hexose monophosphate pathway in normal and in glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Galiano S; Mareni C; Gaetani GF
    Biochim Biophys Acta; 1978 Jan; 501(1):1-9. PubMed ID: 23153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Limiting role of 6-phosphogluconolactonase in erythrocyte hexose monophosphate pathway metabolism.
    Beutler E; Kuhl W
    J Lab Clin Med; 1985 Nov; 106(5):573-7. PubMed ID: 3932573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intracellular restraint: a new basis for the limitation in response to oxidative stress in human erythrocytes containing low-activity variants of glucose-6-phosphate dehydrogenase.
    Gaetani GD; Parker JC; Kirkman HN
    Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3584-7. PubMed ID: 4154443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impaired erythrocyte methemoglobin reduction in sickle cell disease: dependence of methemoglobin reduction on reduced nicotinamide adenine dinucleotide content.
    Zerez CR; Lachant NA; Tanaka KR
    Blood; 1990 Sep; 76(5):1008-14. PubMed ID: 2393709
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms of methylene blue stimulation of the hexose monophosphate shunt in erythrocytes.
    Metz EN; Balcerzak P; Sagone AL
    J Clin Invest; 1976 Oct; 58(4):797-802. PubMed ID: 965487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. Effects of the hexose monophosphate shunt as mediated by glutathione and ascorbate.
    Trotta RJ; Sullivan SG; Stern A
    Biochem J; 1982 May; 204(2):405-15. PubMed ID: 7115337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of NADPH and the NADPH-dependent methemoglobin reductase in the hydroxylase activity of human erythrocytes.
    Blisard KS; Mieyal JJ
    Arch Biochem Biophys; 1981 Sep; 210(2):762-9. PubMed ID: 6795993
    [No Abstract]   [Full Text] [Related]  

  • 29. A NOTE ON THE METHEMOGLOBIN REDUCTASE ACTIVITY OF RABBIT ERYTHROCYTES.
    BIDE RW; COLLIER HB
    Can J Biochem; 1964 May; 42():669-73. PubMed ID: 14185733
    [No Abstract]   [Full Text] [Related]  

  • 30. Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes.
    Ogasawara Y; Funakoshi M; Ishii K
    Blood Cells Mol Dis; 2008; 41(3):237-43. PubMed ID: 18706836
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of pyrroline-5-carboxylic acid on nucleotide metabolism in erythrocytes from normal and glucose-6-phosphate dehydrogenase-deficient subjects.
    Yeh GC; Roth EF; Phang JM; Harris SC; Nagel RL; Rinaldi A
    J Biol Chem; 1984 May; 259(9):5454-8. PubMed ID: 6201483
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toxicity of aromatic thiols in the human red blood cell.
    Amrolia P; Sullivan SG; Stern A; Munday R
    J Appl Toxicol; 1989 Apr; 9(2):113-8. PubMed ID: 2715566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic analysis in single, intact cells by microspectrophotometry: evidence for two populations of erythrocytes in an individual heterozygous for glucose-6-phosphate dehydrogenase deficiency.
    Ashmun RA; Hultquist DE; Schultz JS
    Am J Hematol; 1986 Dec; 23(4):311-6. PubMed ID: 3788959
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Abnormal erythrocyte metabolism in hepatic disease: effect of NADP repletion.
    Smith JR; Kay NE; Gottlieb AJ; Oski FA
    Am J Hematol; 1979; 6(4):313-21. PubMed ID: 43670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Abnormalities of glycolysis (HMP shunt).
    Beutler E
    Bibl Haematol; 1968; 29():146-57. PubMed ID: 5750323
    [No Abstract]   [Full Text] [Related]  

  • 36. Regeneration of reduced glutathione in erythrocytes: stoichiometric and temporal relationship to hexose monophosphate shunt activity.
    Metz EN; Balcerzak SP; Sagone AL
    Blood; 1974 Nov; 44(5):691-7. PubMed ID: 4422338
    [No Abstract]   [Full Text] [Related]  

  • 37. [Interaction of the Embden-Meyerhof pathway and hexose monophosphate shunt in erythrocytes].
    Ataullakhanov FI; Buravtsev VN; Zhabotinskiĩ AM; Norina SB; Pichugin AV
    Biokhimiia; 1981 Apr; 46(4):723-31. PubMed ID: 7284486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of the human-erythrocyte hexose-monophosphate shunt under conditions of oxidative stress. A study using NMR spectroscopy, a kinetic isotope effect, a reconstituted system and computer simulation.
    Thorburn DR; Kuchel PW
    Eur J Biochem; 1985 Jul; 150(2):371-86. PubMed ID: 4018089
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Favism: a hemolytic disease associated with increased superoxide dismutase and decreased glutathione peroxidase activities in red blood cells.
    Mavelli I; Ciriolo MR; Rossi L; Meloni T; Forteleoni G; De Flora A; Benatti U; Morelli A; Rotilio G
    Eur J Biochem; 1984 Feb; 139(1):13-8. PubMed ID: 6698000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antioxidant enzymatic systems and oxidative stress in erythrocytes with G6PD deficiency: effect of deferoxamine.
    Vanella A; Campisi A; Castorina C; Sorrenti V; Attaguile G; Samperi P; Azzia N; Di Giacomo C; Schilirò G
    Pharmacol Res; 1991 Jul; 24(1):25-31. PubMed ID: 1946141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.