These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 4062295)

  • 41. Divicine induces calcium release from rat liver mitochondria.
    Graf M; Frei B; Winterhalter KH; Richter C
    Biochem Biophys Res Commun; 1985 May; 129(1):18-25. PubMed ID: 4004872
    [TBL] [Abstract][Full Text] [Related]  

  • 42. H2O2 production, modification of the glutathione status and methemoglobin formation in red blood cells exposed to diethyldithiocarbamate in vitro.
    Sinet PM; Garber P; Jerome H
    Biochem Pharmacol; 1982 Feb; 31(4):521-5. PubMed ID: 6279106
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Methemoglobin formation and reduction in canine erythrocytes characterized by inherited high Na+, K(+)-ATPase activity with normal and high glutathione concentrations.
    Ogawa E; Horii Y; Honda M; Takahashi R
    J Vet Med Sci; 1994 Oct; 56(5):873-7. PubMed ID: 7865586
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Red blood cells donate electrons to methylene blue mediated chemical reduction of methemoglobin compartmentalized in liposomes in blood.
    Sakai H; Li B; Lim WL; Iga Y
    Bioconjug Chem; 2014 Jul; 25(7):1301-10. PubMed ID: 24877769
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reduction of extracellular methemoglobin by erythrocytes.
    McGown EL; Lyons MF; Marini MA; Zegna A
    Biochim Biophys Acta; 1990 Dec; 1036(3):202-6. PubMed ID: 2257276
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [On the mechanism of ascorbic acid induced methemoglobin reduction of human erythrocytes (author's transl)].
    Waller HD; Benöhr HC; Tigges FJ
    Klin Wochenschr; 1977 Oct; 55(19):955-64. PubMed ID: 926709
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrophoretic and functional variants of NADH-methemoglobin reductase in hereditary methemoglobinemia.
    Hsieh HS; Jaffé ER
    J Clin Invest; 1971 Jan; 50(1):196-202. PubMed ID: 5543874
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NAD(P) glycohydrolase deficiency in human erythrocytes and alteration of cytosol NADH-methemoglobin diaphorase by membrane NAD-glycohydrolase activity.
    Frischer H; Nelson R; Noyes C; Carson PE; Bowman JE; Rieckmann KH; Ajmar F
    Proc Natl Acad Sci U S A; 1973 Aug; 70(8):2406-10. PubMed ID: 4365376
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bound and unbound pyridine dinucleotides in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Canepa L; Ferraris AM; Miglino M; Gaetani GF
    Biochim Biophys Acta; 1991 May; 1074(1):101-4. PubMed ID: 2043659
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The special behavior of equine erythrocytes connected with the methemoglobin regulation.
    Medeiros LO; Nürmberger R; Medeiros LF
    Comp Biochem Physiol B; 1984; 78(4):869-71. PubMed ID: 6467915
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spectrophotometric determination of oxidized and reduced pyridine nucleotides in erythrocytes using a single extraction procedure.
    Zerez CR; Lee SJ; Tanaka KR
    Anal Biochem; 1987 Aug; 164(2):367-73. PubMed ID: 3674385
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Complete deficiency of leukocyte glucose-6-phosphate dehydrogenase with defective bactericidal activity.
    Cooper MR; DeChatelet LR; McCall CE; LaVia MF; Spurr CL; Baehner RL
    J Clin Invest; 1972 Apr; 51(4):769-78. PubMed ID: 4401271
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The chemistry of favism-inducing compounds. The properties of isouramil and divicine and their reaction with glutathione.
    Chevion M; Navok T; Glaser G; Mager J
    Eur J Biochem; 1982 Oct; 127(2):405-9. PubMed ID: 7140776
    [TBL] [Abstract][Full Text] [Related]  

  • 54. NADP+ and NADPH in glucose-6-phosphate dehydrogenase-deficient erythrocytes under oxidative stimulation.
    Mareni C; Gaetani GF
    Biochim Biophys Acta; 1976 Jun; 430(3):395-8. PubMed ID: 7294
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activity of divicine in Plasmodium vinckei-infected mice has implications for treatment of favism and epidemiology of G-6-PD deficiency.
    Clark IA; Cowden WB; Hunt NH; Maxwell LE; Mackie EJ
    Br J Haematol; 1984 Jul; 57(3):479-87. PubMed ID: 6743567
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simulation study of methemoglobin reduction in erythrocytes. Differential contributions of two pathways to tolerance to oxidative stress.
    Kinoshita A; Nakayama Y; Kitayama T; Tomita M
    FEBS J; 2007 Mar; 274(6):1449-58. PubMed ID: 17489100
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Respiration and glucose oxidation in human and guinea pig leukocytes: comparative studies.
    Baehner RL; Gilman N; Karnovsky ML
    J Clin Invest; 1970 Apr; 49(4):692-700. PubMed ID: 4392648
    [TBL] [Abstract][Full Text] [Related]  

  • 58. GLUCOSE-6-PHOSPHATE AND 6-PHOSPHOGLUCONIC DEHYDROGENASE ACTIVITIES IN THE RED BLOOD CELLS OF SEVERAL ANIMAL SPECIES.
    SALVIDIO E; PANNACCIULLI I; TIZIANELLO A
    Nature; 1963 Oct; 200():372-3. PubMed ID: 14087898
    [No Abstract]   [Full Text] [Related]  

  • 59. Membrane cross bonding in red cells in favic crisis: a missing link in the mechanism of extravascular haemolysis.
    Fischer TM; Meloni T; Pescarmona GP; Arese P
    Br J Haematol; 1985 Jan; 59(1):159-69. PubMed ID: 3970849
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Relationship between the pentose phosphate shunt and methemoglobin reductase activity in human erythrocytes: Effect of aging on methemoglobin reductase activity.
    Ioppolo C; Currell DL; Civalleri L; Antonini E
    Experientia; 1979 Aug; 35(8):1112-3. PubMed ID: 38988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.