These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 4062840)

  • 1. Barriers in cardiac substrate supply.
    Kammermeier H; Wein B; Gerards P; Lang U; Wendtland B; Schmitz D; Rose H
    Basic Res Cardiol; 1985; 80 Suppl 2():89-92. PubMed ID: 4062840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of lactate transfer in isolated cardiac myocytes.
    Kammermeier H; Wein B; Graf W
    Basic Res Cardiol; 1985; 80 Suppl 1():57-60. PubMed ID: 3994639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interstitial fluid of isolated perfused rat hearts: glucose and lactate concentration.
    Kammermeier H; Wendtland B
    J Mol Cell Cardiol; 1987 Feb; 19(2):167-75. PubMed ID: 3573046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is lactate-induced myocardial ischaemic injury mediated by decreased pH or increased intracellular lactate?
    Cross HR; Clarke K; Opie LH; Radda GK
    J Mol Cell Cardiol; 1995 Jul; 27(7):1369-81. PubMed ID: 7473783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interstitial lactate and glucose concentrations of the isolated perfused rat heart before, during and after anoxia.
    Strupp M; Kammermeier H
    Pflugers Arch; 1993 May; 423(3-4):232-7. PubMed ID: 8321626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of myocyte insulin-responsive glucose transporters by the inhibition of fatty acid oxidation.
    Abdel-aleem S; Badr M; Perez-Tamayo RA; Anstadt MP; Lowe JE
    Diabetes Res; 1993; 22(1):11-9. PubMed ID: 8200180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trans-stimulation of lactate transport from rat sarcolemmal membrane vesicles.
    Brown MA; Brooks GA
    Arch Biochem Biophys; 1994 Aug; 313(1):22-8. PubMed ID: 8053682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-linked adjustment of myocardial metabolism to changing mechanical demands in the isolated rat heart.
    Rubányi G; Kovách AG
    Acta Physiol Acad Sci Hung; 1980; 55(4):335-43. PubMed ID: 7468250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is substrate supply of the myocardium limited by capillary exchange?
    Kammermeier H; Kammermeier B
    Recent Adv Stud Cardiac Struct Metab; 1975; 7():61-7. PubMed ID: 1226459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluidising effect of resorcylidene aminoguanidine on sarcolemmal membranes in streptozotocin-diabetic rats: blunted adaptation of diabetic myocardium to Ca2+ overload.
    Waczulíková I; Ziegelhöffer A; Országhová Z; Cársky J
    J Physiol Pharmacol; 2002 Dec; 53(4 Pt 2):727-39. PubMed ID: 12510859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of phenformin on the metabolism of glucose, pyruvate and acetate in guinea-pig heart.
    Rösen P; Adrian M; Herzfeld D; Feuerstein J; Müller W; Reinauer H
    Diabete Metab; 1980 Sep; 6(3):205-11. PubMed ID: 7439493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The effect of apilak on the concentration of citrate, pyruvate, lactate and glucose in brain, liver, cardiac tissue and blood].
    Sarkisian EL
    Farmakol Toksikol; 1973; 36(3):325-7. PubMed ID: 4788493
    [No Abstract]   [Full Text] [Related]  

  • 14. Role of glycolysis in maintenance of the action potential duration and contractile activity in isolated perfused rat heart.
    Opie LH; Tuschmidt R; Bricknell O; Girardier L
    J Physiol (Paris); 1980; 76(7):821-9. PubMed ID: 7218167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute effect of antidiabetic 1,4-dihydropyridine compound cerebrocrast on cardiac function and glucose metabolism in the isolated, perfused normal rat heart.
    Briede J; Stivrina M; Vigante B; Stoldere D; Duburs G
    Cell Biochem Funct; 2008; 26(2):238-45. PubMed ID: 17990288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactate transport by cardiac sarcolemmal vesicles.
    Trosper TL; Philipson KD
    Am J Physiol; 1987 May; 252(5 Pt 1):C483-9. PubMed ID: 3578501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The capillary and sarcolemmal barriers in the heart. An exploration of labeled water permeability.
    Rose CP; Goresky CA; Bach GG
    Circ Res; 1977 Oct; 41(4):515-33. PubMed ID: 902358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constraints on the uptake of labeled palmitate by the heart. The barriers at the capillary and sarcolemmal surfaces and the control of intracellular sequestration.
    Rose CP; Goresky CA
    Circ Res; 1977 Oct; 41(4):534-45. PubMed ID: 902359
    [No Abstract]   [Full Text] [Related]  

  • 19. Substrate dependence of energy metabolism in isolated guinea-pig cardiac muscle: a microcalorimetric study.
    Daut J; Elzinga G
    J Physiol; 1989 Jun; 413():379-97. PubMed ID: 2600856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The immediate environment of cardiomyocytes: substantial concentration differences between the interstitial fluid and plasma water for substrates and transmitters.
    Kammermeier H
    J Mol Cell Cardiol; 1995 Jan; 27(1):195-200. PubMed ID: 7760343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.