These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 4062979)

  • 1. The hemolytic activity of citral--II. Glutathione depletion in citral treated erythrocytes.
    Segal R; Milo-Goldzweig I
    Biochem Pharmacol; 1985 Dec; 34(23):4117-9. PubMed ID: 4062979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hemolytic activity of citral: evidence for free radical participation.
    Tamir I; Abramovici A; Milo-Goldzweig I; Segal R
    Biochem Pharmacol; 1984 Oct; 33(19):2945-50. PubMed ID: 6487347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peroxyl radical-mediated hemolysis: role of lipid, protein and sulfhydryl oxidation.
    Sandhu IS; Ware K; Grisham MB
    Free Radic Res Commun; 1992; 16(2):111-22. PubMed ID: 1628857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygenated monoterpenes citral and carvacrol cause oxidative damage in Escherichia coli without the involvement of tricarboxylic acid cycle and Fenton reaction.
    Chueca B; Pagán R; García-Gonzalo D
    Int J Food Microbiol; 2014 Oct; 189():126-31. PubMed ID: 25146464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro hemolysis of rat erythrocytes by selenium compounds.
    Hu ML; Spallholz JE
    Biochem Pharmacol; 1983 Mar; 32(6):957-61. PubMed ID: 6838660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effect of gallic acid and its esters on 2,2'-azobis(2-amidinopropane)hydrochloride (AAPH)-induced hemolysis and depletion of intracellular glutathione in erythrocytes.
    Ximenes VF; Lopes MG; Petrônio MS; Regasini LO; Silva DH; da Fonseca LM
    J Agric Food Chem; 2010 May; 58(9):5355-62. PubMed ID: 20397726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Riboflavin deficiency and glutathione metabolism in rats: possible mechanisms underlying altered responses to hemolytic stimuli.
    Dutta P; Gee M; Rivlin RS; Pinto J
    J Nutr; 1988 Sep; 118(9):1149-57. PubMed ID: 3418422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of limonene on induced delayed hypersensitivity to citral in guinea pigs. II. Label distribution in the skin of 14C-labelled citral.
    Barbier P; Benezra C
    Acta Derm Venereol; 1983; 63(2):93-6. PubMed ID: 6189349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free radical-mediated pre-hemolytic injury in human red blood cells subjected to lead acetate as evaluated by chemiluminescence.
    Casado MF; Cecchini AL; Simão AN; Oliveira RD; Cecchini R
    Food Chem Toxicol; 2007 Jun; 45(6):945-52. PubMed ID: 17250942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenol and catechol induce prehemolytic and hemolytic changes in human erythrocytes.
    Bukowska B; Kowalska S
    Toxicol Lett; 2004 Aug; 152(1):73-84. PubMed ID: 15294349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3,3'-diselenodipropionic acid, an efficient peroxyl radical scavenger and a GPx mimic, protects erythrocytes (RBCs) from AAPH-induced hemolysis.
    Kunwar A; Mishra B; Barik A; Kumbhare LB; Pandey R; Jain VK; Priyadarsini KI
    Chem Res Toxicol; 2007 Oct; 20(10):1482-7. PubMed ID: 17900173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of silibinin (Legalon) on the the free radical scavenger mechanisms of human erythrocytes in vitro.
    Altorjay I; Dalmi L; Sári B; Imre S; Balla G
    Acta Physiol Hung; 1992; 80(1-4):375-80. PubMed ID: 1345204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protective effects of glucosamine hydrochloride against free radical-induced erythrocytes damage.
    Jamialahmadi K; Arasteh O; Matbou Riahi M; Mehri S; Riahi-Zanjani B; Karimi G
    Environ Toxicol Pharmacol; 2014 Jul; 38(1):212-9. PubMed ID: 24959958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of citral phototoxicity.
    Asthana A; Larson RA; Marley KA; Tuveson RW
    Photochem Photobiol; 1992 Aug; 56(2):211-22. PubMed ID: 1502265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protection of Clitoria ternatea flower petal extract against free radical-induced hemolysis and oxidative damage in canine erythrocytes.
    Phrueksanan W; Yibchok-anun S; Adisakwattana S
    Res Vet Sci; 2014 Oct; 97(2):357-63. PubMed ID: 25241390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two mechanisms for toxic effects of hydroxylamines in human erythrocytes: involvement of free radicals and risk of potentiation.
    Evelo CT; Spooren AA; Bisschops RA; Baars LG; Neis JM
    Blood Cells Mol Dis; 1998 Sep; 24(3):280-95. PubMed ID: 10087986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exogenous glutathione is essential in the testing of antioxidant capacity using radical-induced haemolysis.
    Jani N; Ziogas J; Angus JA; Wright CE
    J Pharmacol Toxicol Methods; 2012; 65(3):142-6. PubMed ID: 22507255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemin-mediated hemolysis in erythrocytes: effects of ascorbic acid and glutathione.
    Li SD; Su YD; Li M; Zou CG
    Acta Biochim Biophys Sin (Shanghai); 2006 Jan; 38(1):63-9. PubMed ID: 16395529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human erythrocyte hemolysis induced by selenium and tellurium compounds increased by GSH or glucose: a possible involvement of reactive oxygen species.
    Schiar VP; Dos Santos DB; Paixão MW; Nogueira CW; Rocha JB; Zeni G
    Chem Biol Interact; 2009 Jan; 177(1):28-33. PubMed ID: 18983990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of inhibition of aldehyde dehydrogenase by citral, a retinoid antagonist.
    Kikonyogo A; Abriola DP; Dryjanski M; Pietruszko R
    Eur J Biochem; 1999 Jun; 262(3):704-12. PubMed ID: 10411631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.