These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63. Glutathione in the red blood cells of embryonic mice. Brittain T; Tottle B Comp Biochem Physiol B; 1986; 83(4):843-6. PubMed ID: 3709116 [TBL] [Abstract][Full Text] [Related]
64. Haemoglobin content of individual erythrocytes in normal and abnormal blood. James V; Goldstein DJ Br J Haematol; 1974 Sep; 28(1):89-102. PubMed ID: 4413623 [No Abstract] [Full Text] [Related]
65. Erythrocyte glutathione level in relation to haemoglobin type in Rajasthan desert sheep. Kalla SD; Ghosh PK Aust J Biol Sci; 1973 Oct; 26(5):1221-3. PubMed ID: 4797164 [No Abstract] [Full Text] [Related]
66. Changes with ages in the proportion of nucleated red blood cell types and in the type of haemoglobin in kangaroo pouch young. Richardson BJ; Russell EM Aust J Exp Biol Med Sci; 1969 Oct; 47(5):573-80. PubMed ID: 5373688 [No Abstract] [Full Text] [Related]
68. Red blood cell storage lesion: causes and potential clinical consequences. Yoshida T; Prudent M; D'alessandro A Blood Transfus; 2019 Jan; 17(1):27-52. PubMed ID: 30653459 [TBL] [Abstract][Full Text] [Related]
69. Nanoparticle Properties Modulate Their Attachment and Effect on Carrier Red Blood Cells. Pan DC; Myerson JW; Brenner JS; Patel PN; Anselmo AC; Mitragotri S; Muzykantov V Sci Rep; 2018 Jan; 8(1):1615. PubMed ID: 29371620 [TBL] [Abstract][Full Text] [Related]
70. Multiphoton excited hemoglobin fluorescence and third harmonic generation for non-invasive microscopy of stored blood. Saytashev I; Glenn R; Murashova GA; Osseiran S; Spence D; Evans CL; Dantus M Biomed Opt Express; 2016 Sep; 7(9):3449-3460. PubMed ID: 27699111 [TBL] [Abstract][Full Text] [Related]
71. Crosstalk between red blood cells and the immune system and its impact on atherosclerosis. Buttari B; Profumo E; Riganò R Biomed Res Int; 2015; 2015():616834. PubMed ID: 25722984 [TBL] [Abstract][Full Text] [Related]
72. Aging and death signalling in mature red cells: from basic science to transfusion practice. Antonelou MH; Kriebardis AG; Papassideri IS Blood Transfus; 2010 Jun; 8 Suppl 3(Suppl 3):s39-47. PubMed ID: 20606748 [No Abstract] [Full Text] [Related]
73. Derangement of erythrocytic AE1 in beta-thalassemia by caspase 3: pathogenic mechanisms and implications in red blood cell senescence. Ficarra S; Tellone E; Giardina B; Scatena R; Russo A; Misiti F; Clementi ME; Colucci D; Bellocco E; Laganà G; Barreca D; Galtieri A J Membr Biol; 2009 Mar; 228(1):43-9. PubMed ID: 19238475 [TBL] [Abstract][Full Text] [Related]
74. Spectrin interactions with globin chains in the presence of phosphate metabolites and hydrogen peroxide: implications for thalassaemia. Datta P; Chakrabarty S; Chakrabarty A; Chakrabarti A J Biosci; 2007 Sep; 32(6):1147-51. PubMed ID: 17954975 [TBL] [Abstract][Full Text] [Related]
75. Spectrin degradation in intact red blood cells by phenylhydrazine. Arduini A; Stern A Biochem Pharmacol; 1985 Dec; 34(24):4283-9. PubMed ID: 4074388 [TBL] [Abstract][Full Text] [Related]
76. Irreversible spectrin-haemoglobin crosslinking in vivo: a marker for red cell senescence. Snyder LM; Leb L; Piotrowski J; Sauberman N; Liu SC; Fortier NL Br J Haematol; 1983 Mar; 53(3):379-84. PubMed ID: 6824583 [No Abstract] [Full Text] [Related]