BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 406371)

  • 1. Formation of 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine in an adenine-riboflavin doubleless mutant of Bacillus subtilis.
    Mitsuda H; Nakajima K; Yamada Y
    J Nutr Sci Vitaminol (Tokyo); 1977; 23(2):161-4. PubMed ID: 406371
    [No Abstract]   [Full Text] [Related]  

  • 2. Isolation of 4-(1'-D-ribitylamino)-5-amino-2,6-dihydroxypyrimidine from a riboflavin-adenine-deficient mutant of Bacillus subtilis.
    Mitsuda H; Nakajima K; Yamada Y
    J Biol Chem; 1978 Apr; 253(7):2238-43. PubMed ID: 416026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of riboflavin. Enzymatic formation of 6,7-dimethyl-8-ribityllumazine by heavy riboflavin synthase from Bacillus subtilis.
    Neuberger G; Bacher A
    Biochem Biophys Res Commun; 1986 Sep; 139(3):1111-6. PubMed ID: 3094525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of riboflavin on 6,7-dimethyl-8-ribityllumazine formation in growing cells of a riboflavin-adenine-deficient mutant, Bacillus subtilis.
    Nakajima K
    J Nutr Sci Vitaminol (Tokyo); 2004 Oct; 50(5):377-9. PubMed ID: 15754501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory mechanisms of 6,7-dimethyl-8-ribityllumazine formation in resting cells of a riboflavin-adenine-deficient mutant of Bacillus subtilis.
    Nakajima K
    J Nutr Sci Vitaminol (Tokyo); 2005 Aug; 51(4):271-3. PubMed ID: 16262000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Operon of riboflavin synthesis in Bacillus subtilis. IX. Preparation and properties of lumiflavin- or lumichrome-resistant mutants].
    Bresler SE; Perumov DA; Shevchenko TN; Glazunov EA; Chernik TP
    Genetika; 1975; 11(8):129-38. PubMed ID: 815136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of riboflavin production by overexpression of acetolactate synthase in a pta mutant of Bacillus subtilis.
    Zhu Y; Chen X; Chen T; Zhao X
    FEMS Microbiol Lett; 2007 Jan; 266(2):224-30. PubMed ID: 17233734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Analgos of riboflavin, lumiflavin and alloxazine derivatives. II. Effect of roseoflavin on 6,7-dimethyl-8-ribityllumazine and riboflavin synthetase synthesis and growth of Bacillus subtilis].
    Stepanov AI; Kukanova AIa; Glazunov EA; Zhdanov VG
    Genetika; 1977; 13(3):490-5. PubMed ID: 408231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Riboflavin and lumiflavin analogs and alloxazine derivatives. I. Effect on riboflavin synthesis by and growth of Bacillus subtilis].
    Stepanov AI; Tul'chinskaia LS; Berezovskiĭ VM; Kukanova AIa
    Genetika; 1975; 11(9):116-24. PubMed ID: 814049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of riboflavin. Formation of 2,5-diamino-6-hydroxy-4-(1'-D-ribitylamino)pyrimidine in a riboflavin auxotroph.
    Bacher A; Lingens F
    J Biol Chem; 1970 Sep; 245(18):4647-52. PubMed ID: 5456141
    [No Abstract]   [Full Text] [Related]  

  • 11. Biosynthesis of vitamin b2 (riboflavin).
    Bacher A; Eberhardt S; Fischer M; Kis K; Richter G
    Annu Rev Nutr; 2000; 20():153-67. PubMed ID: 10940330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin.
    Grill S; Busenbender S; Pfeiffer M; Köhler U; Mack M
    J Bacteriol; 2008 Mar; 190(5):1546-53. PubMed ID: 18156273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine from a high flavinogenic mold Eremothecium ashbyii1.
    Mitsuda H; Nakajima K
    J Nutr Sci Vitaminol (Tokyo); 1976; 22(4):307-12. PubMed ID: 1034673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis.
    Ott E; Stolz J; Lehmann M; Mack M
    RNA Biol; 2009; 6(3):276-80. PubMed ID: 19333008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of adenine on the riboflavin-sensitized photoreaction. II. Effect of adenine on the photodynamic inactivation of transforming deoxyribonucleic acid in the presence of riboflavin.
    Uehara K; Mizoguchi T; Hosomi S
    J Biochem; 1972 May; 71(5):805-10. PubMed ID: 4627422
    [No Abstract]   [Full Text] [Related]  

  • 16. [Fusion of Bacillus subtilis and Bacillus licheniformis protoplasts. The mapping of the mutations leading to the supersynthesis of riboflavin in interspecies hybrids].
    Kukanova AIa; Iaroslavtseva NG; Zvenigorodskiĭ VI; Zhdanov VG
    Antibiot Med Biotekhnol; 1986 Mar; 31(3):167-70. PubMed ID: 3087272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Riboflavin deficiency and respiratory flavoproteins of Bacillus subtilis.
    Kemp MB; Garland PB
    J Gen Microbiol; 1974 Dec; 85(2):303-13. PubMed ID: 4155718
    [No Abstract]   [Full Text] [Related]  

  • 18. [Transketolase mutation in riboflavin-synthesizing strains of Bacillus subtilis].
    Gershanovich VN; Kukanova AIa; Galushkina ZM; Stepanov AI
    Mol Gen Mikrobiol Virusol; 2000; (3):3-7. PubMed ID: 10975072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of riboflavin in Bacillus subtilis: origin of the four-carbon moiety.
    Le Van Q; Keller PJ; Bown DH; Floss HG; Bacher A
    J Bacteriol; 1985 Jun; 162(3):1280-4. PubMed ID: 3922947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake and binding of riboflavin by membrane vesicles of Bacillus subtilis.
    Cecchini G; Kearney EB
    J Supramol Struct; 1980; 13(1):93-100. PubMed ID: 6777606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.