BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 406371)

  • 21. [Operon study of riboflavin biosynthesis in Bacillus subtilis. XII. The determination of the ATP:riboflavin-5'-phosphotransferase and riboflavinsynthetase content in the cells with varying genotypes].
    Bresler SE; Perumov DA; Glazunov EA; Shevchenko TN; Chernik TP
    Genetika; 1977; 13(5):880-7. PubMed ID: 205483
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of chromatography. XXVII. On the formation of FAD in the culture of Eremothecium ashbyii.
    MASUDA T; SAWA Y; ASAI M
    Pharm Bull; 1955 Oct; 3(5):375-8. PubMed ID: 13289297
    [No Abstract]   [Full Text] [Related]  

  • 23. [Operon of riboflavin biosynthesis in Bacillus subtilis. XV. A study of mutants related to the initial stages of biosynthesis. The origin of the ribityl chain of the riboflavin molecule].
    Bresler SE; Gorinchuk GF; Chernik TP; Perumov DA
    Genetika; 1978; 14(12):2082-90. PubMed ID: 105966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Operon for riboflavin synthesis in Bacillus subtilis. XI. Determination of the type of regulation using a test for dominance of operator-constitutive and regulator-constitutive mutations].
    Bresler SE; Perumov DA; Chernik TP; Skvortsova AP
    Genetika; 1976; 12(8):124-30. PubMed ID: 826456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Study of the phenotypic occurrence of ura gene inactivation in Bacillus subtilis].
    Kreneva RA; Gel'fand MS; Mironov AA; Iomantas IuA; Kozlov IuI; Mironov AS; Perumov DA
    Genetika; 2000 Aug; 36(8):1166-8. PubMed ID: 11033791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic modeling of riboflavin biosynthesis in Bacillus subtilis under production conditions.
    Birkenmeier M; Neumann S; Röder T
    Biotechnol Lett; 2014 May; 36(5):919-28. PubMed ID: 24442413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production.
    Hu J; Lei P; Mohsin A; Liu X; Huang M; Li L; Hu J; Hang H; Zhuang Y; Guo M
    Microb Cell Fact; 2017 Sep; 16(1):150. PubMed ID: 28899391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs.
    Wu QL; Chen T; Gan Y; Chen X; Zhao XM
    Appl Microbiol Biotechnol; 2007 Sep; 76(4):783-94. PubMed ID: 17576552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Effect of Sulfathiazole on the Rate of Increase of Riboflavin Production by Proteus vulgaris and Bacillus subtilis.
    Crandall RE
    J Bacteriol; 1948 Jun; 55(6):833-7. PubMed ID: 16561527
    [No Abstract]   [Full Text] [Related]  

  • 30. Systematic Analysis of the Effect of Genomic Knock-Out of Non-Essential Promiscuous HAD-Like Phosphatases YcsE, YitU and YwtE on Flavin and Adenylate Content in Bacillus Subtilis.
    Scharf A; La-Rostami F; Illarionov BA; Nemes V; Feldmann AM; Höft LS; Lösel H; Bacher A; Fischer M
    Chembiochem; 2024 Jun; 25(12):e202400165. PubMed ID: 38616163
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum.
    Vogl C; Grill S; Schilling O; Stülke J; Mack M; Stolz J
    J Bacteriol; 2007 Oct; 189(20):7367-75. PubMed ID: 17693491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The induction of auxotrophic mutations for riboflavin by the integration of plasmid pLRS33 into the chromosome of Bacillus subtilis].
    Shevchenko TN; Timashova EO; Gorinchuk GF; Maliuta SS
    Genetika; 1988 Aug; 24(8):1371-4. PubMed ID: 3144477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of the operon of riboflavin biosynthesis in Bacillus subtilis. 3. Production and properties of mutants with a complex regulator genotype.
    Bresler SE; Cherepenko EI; Perumov DA
    Sov Genet; 1974 Feb; 7(11):1466-70. PubMed ID: 4208212
    [No Abstract]   [Full Text] [Related]  

  • 34. [Transcription of the riboflavin operon in Bacillus subtilis].
    Osina NK; Kalambet IuA; Aleksandrov AA
    Dokl Akad Nauk SSSR; 1985; 282(3):737-40. PubMed ID: 2411487
    [No Abstract]   [Full Text] [Related]  

  • 35. The incorporation of the pyrimidine ring of adenine into the isoalloxazine ring of riboflavin.
    MCNUTT WS
    J Biol Chem; 1956 Mar; 219(1):365-73. PubMed ID: 13295289
    [No Abstract]   [Full Text] [Related]  

  • 36. [Riboflavin operon in Bacillus subtilis contains additional promoters].
    Morozov GI; Rabinovich PM; Emel'ianov VV; Stepanov AI
    Mol Gen Mikrobiol Virusol; 1985 Dec; (12):14-9. PubMed ID: 3939570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A second riboflavin import system is present in flavinogenic Streptomyces davaonensis and supports roseoflavin biosynthesis.
    Schneider C; Mack M
    Mol Microbiol; 2021 Aug; 116(2):470-482. PubMed ID: 33829573
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Regulatory regions of the operon of riboflavin biosynthesis in Bacillus subtilis].
    Chikindas ML; Morozov GI; Mironov VN; Luk'ianov EV; Emel'ianov VV
    Dokl Akad Nauk SSSR; 1988; 298(4):997-1000. PubMed ID: 2836150
    [No Abstract]   [Full Text] [Related]  

  • 39. [Unusual structure of the regulatory region of the riboflavin biosynthesis operon in Bacillus subtilis].
    Mironov VN; Perumov DA; Kraev AS; Stepanov AI; Skriabin KG
    Mol Biol (Mosk); 1990; 24(1):256-61. PubMed ID: 2112225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Riboflavin synthetase from Eremothecium ashbyii and a salvage pathway of the by-product in the enzyme reaction.
    Mitsuda H; Nakajima K; Nadamoto T; Yamada Y
    Methods Enzymol; 1980; 66():307-23. PubMed ID: 6768961
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.