These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 4064414)
1. Indentation stiffness of the cancellous bone in the distal human tibia. Aitken GK; Bourne RB; Finlay JB; Rorabeck CH; Andreae PR Clin Orthop Relat Res; 1985 Dec; (201):264-70. PubMed ID: 4064414 [TBL] [Abstract][Full Text] [Related]
2. [Biomechanical research in treating unstable Pilon fracture with anatomic plate of distal tibia]. Cui Y; Wang YJ; Hua QK; Cai SQ; Yan LM; Chen KJ Zhongguo Gu Shang; 2009 Jul; 22(7):519-21. PubMed ID: 19705717 [TBL] [Abstract][Full Text] [Related]
3. Mechanical strength of trabecular bone at the knee. Hvid I Dan Med Bull; 1988 Aug; 35(4):345-65. PubMed ID: 3048922 [TBL] [Abstract][Full Text] [Related]
4. Mechanical properties of cancellous bone of the distal humerus. Dunham CE; Takaki SE; Johnson JA; Dunning CE Clin Biomech (Bristol); 2005 Oct; 20(8):834-8. PubMed ID: 16023773 [TBL] [Abstract][Full Text] [Related]
5. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. Mente PL; Lewis JL J Orthop Res; 1994 Sep; 12(5):637-47. PubMed ID: 7931780 [TBL] [Abstract][Full Text] [Related]
6. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle. Yeni YN; Dong XN; Fyhrie DP; Les CM Biomed Mater Eng; 2004; 14(3):303-10. PubMed ID: 15299242 [TBL] [Abstract][Full Text] [Related]
7. Trabecular bone strength patterns at the proximal tibial epiphysis. Hvid I; Hansen SL J Orthop Res; 1985; 3(4):464-72. PubMed ID: 4067705 [TBL] [Abstract][Full Text] [Related]
8. Mechanical bone strength of the tibial resection surface at increasing distance from the joint line in total knee arthroplasty. Chaput CD; Weeden SH; Hyman WA; Hitt KD J Surg Orthop Adv; 2004; 13(4):195-8. PubMed ID: 15691179 [TBL] [Abstract][Full Text] [Related]
9. Cancellous bone support for patellar resurfacing. Josechak RG; Finlay JB; Bourne RB; Rorabeck CH Clin Orthop Relat Res; 1987 Jul; (220):192-9. PubMed ID: 3297451 [TBL] [Abstract][Full Text] [Related]
10. Trabecular bone strain changes associated with cartilage defects in the proximal and distal tibia. McKinley TO; Bay BK J Orthop Res; 2001 Sep; 19(5):906-13. PubMed ID: 11562140 [TBL] [Abstract][Full Text] [Related]
11. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone. Nazemi SM; Amini M; Kontulainen SA; Milner JS; Holdsworth DW; Masri BA; Wilson DR; Johnston JD Clin Biomech (Bristol); 2017 Jan; 41():1-8. PubMed ID: 27842233 [TBL] [Abstract][Full Text] [Related]
12. Age-related three-dimensional microarchitectural adaptations of subchondral bone tissues in guinea pig primary osteoarthrosis. Ding M; Danielsen CC; Hvid I Calcif Tissue Int; 2006 Feb; 78(2):113-22. PubMed ID: 16397735 [TBL] [Abstract][Full Text] [Related]
13. Individual and combined effects of OA-related subchondral bone alterations on proximal tibial surface stiffness: a parametric finite element modeling study. Amini M; Nazemi SM; Lanovaz JL; Kontulainen S; Masri BA; Wilson DR; Szyszkowski W; Johnston JD Med Eng Phys; 2015 Aug; 37(8):783-91. PubMed ID: 26074327 [TBL] [Abstract][Full Text] [Related]
14. [Study on the mechanical strength of the medial tibial condyle at the knee]. Fujimori J Nihon Seikeigeka Gakkai Zasshi; 1982 Dec; 56(12):1687-92. PubMed ID: 7182423 [TBL] [Abstract][Full Text] [Related]
15. Predicting regional variations in trabecular bone mechanical properties within the human proximal tibia using MR imaging. Lancianese SL; Kwok E; Beck CA; Lerner AL Bone; 2008 Dec; 43(6):1039-46. PubMed ID: 18755303 [TBL] [Abstract][Full Text] [Related]
16. Volar fixed-angle plating of distal radius extension fractures: influence of plate position on secondary loss of reduction--a biomechanic study in a cadaveric model. Drobetz H; Bryant AL; Pokorny T; Spitaler R; Leixnering M; Jupiter JB J Hand Surg Am; 2006 Apr; 31(4):615-22. PubMed ID: 16632057 [TBL] [Abstract][Full Text] [Related]
17. Mineralisation and mechanical strength of the subchondral bone plate of the inferior tibial facies. Mühlhofer H; Ercan Y; Drews S; Matsuura M; Meissner J; Linsenmaier U; Putz R; Müller-Gerbl M Surg Radiol Anat; 2009 Apr; 31(4):237-43. PubMed ID: 18985273 [TBL] [Abstract][Full Text] [Related]
18. Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. Ding M; Odgaard A; Hvid I J Bone Joint Surg Br; 2003 Aug; 85(6):906-12. PubMed ID: 12931817 [TBL] [Abstract][Full Text] [Related]
19. Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia. Nazemi SM; Kalajahi SMH; Cooper DML; Kontulainen SA; Holdsworth DW; Masri BA; Wilson DR; Johnston JD J Biomech; 2017 Jul; 59():101-108. PubMed ID: 28601243 [TBL] [Abstract][Full Text] [Related]
20. Effect of tibial dyschondroplasia on broiler growth and cancellous bone mechanical properties. Capps SG Avian Dis; 1998; 42(1):162-7. PubMed ID: 9533094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]